Weekly Schedule and Class Notes
  • Lecture notes : all notes will be posted in this section.
  • It is your responsibility to download, print and bring the notes to the class. Notes will be available 24 hours before each class.

 Week

Date

 Topic

 Reading

 Assignments

Notices and Dues

Notes

 1

09/05

(09/06)

1. Pre-introduction

2. System, Processes and Network

 Lecture Note

Homework #1 (Homepage)

   

 2

09/12

(09/13)

3. Stable Network Vs Unstable Network

Lecture Note

 

Due for homework #1

 

3

09/19

(09/20)

4. Shortest Path in Stable Network

5. Complexity of Stable Network

Lecture Note

Homework #2 (Network modeling)

Homework #2 (Network modeling)

 

 4

09/26

(09/27)

6. Embeded system programming architecture

7. Programming (ligprog, intlinprog)

8. Maximal flow problem , Multi-product maximal flow problem

Lecture Note

Homework #3 (Multi-product Maximal Flow problem)

Homework #3

 

 5

10/03

(10/04)

9. Graph & Tree

10. Minimal Spanning Tree

11. Kruskel algorithm and Prim's algorithm

12. Implementation of Prim's algorithm

Lecture Note

   

[Dataset]

[Prim algorithm]

6

10/10

(10/11)

13. Local Search and Heuristics (Steepest Descent method)

14. Nonlinear function

(Rosenbrock logarithmic banana function)

Lecture Note

     

 7

10/17

(10/18)

Reading days

Lecture Note

     

 8

10/24

(10/25)

15. Homogeneous system Vs. Non-homogeneous system

16.  Handling of Constraints (Primal problem Vs Dual Problem)

17. KKT Condition for NLP

Lecture Note

     

 9

10/31

(11/01)

16. Metaheuristics

17. Simulated Annealing

Lecture Note

   

[Lecture note]

 10

 11/07

(11/08)

midterm

Lecture Note

     

 11

 11/14

(11/15)

18. Histroy of Metaheuristics

19. Deep Learning : First Introduction

Lecture Note

Homework #4 (Data for deep learning)

Due for homework #4

[Lecture note]

12

 11/21

(11/22)

20. Deep Learning

21. Seminconduct Design

Lecture Note

     

13

 11/28

(11/29)

22. Backpropagation

23. Bias in Deep neural network

Lecture Note

     

 14

  12/05

(12/06)

24. Deep Learning implementation

25. Data regularization and another activation function

Lecture Note

Homework #5 (Deep learning-based data prediction)

Due for homework #5

 

 15

  12/12

(12/13)

26. Various acitivation fuctions (Sigmoid, Tanh, ReLU, softmax)

27. Training options (SGMD, Momentum, Adagrad, RMSProp, Adadelta, ADAM)

Lecture Note

     

 16

  12/19(12/20)

Final exam

Lecture Note