Decepp Learrring and Daflfta Mrirnrrnng

Deep Learning
Basics in Neural Net/ Backpropagation

Activation

function
Output
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Decepp Learrring and Daflfta Mrirnrrnng

Neural Network

e Basics in Neural Network

- Related fields

e Machine Learning
e Pattern Analysis
- Motivation

e Current Mathematical control =» “Too load”
e Another method = “Think like “Human’s brain”

e Reference

- Simon Haykin, ‘“Neural Network : A Comprehensive
Foundation”, 2" | Prentice-Hall, 1999
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Human Brain (1)

e Neuron
Dendrite
Soma
Axon terminal
Contact dendrite
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Human Brain (2)

e Human brain : Arbib (1987)

- Stimulus = Receptors €=» (Neural Net) €=>» Effectors -
Response

Pioneer : Santiago Ramon y Cajal, a Spanish Neuroanatomist
who introduced neurons as a fundamental unit of brain
function

Neuron are slow : 103 Vs 10 -°

Highly energy efficient : 1019 J Vs 10 -6 J

Huge number of neurons and connections
e 1019 Neurons & 6 X 10 ¥ Connection
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Human Brain (3)
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Decepp Learrring and Daflfta Mrirnrrnng

Human Brain (4)

Human brain “Computes” in an entirely different way from
conventional digital computers

The brain is highly complex, nonlinear and parallel

Organization or neurons to perform task much faster than
computers

- Typical time taken in visual recognition tasks is 100~200ms

Key features of the biological brain

- experience shapes the wiring throulgh plasticity and hence learning
becomes the central issues in neural networks
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Neural Network
as an adaptive machine

e Neural Network

- A massively parallel distributed processor made up of simple
processing units, which has a natural propensity for storing
experimental knowledge and making it available for use

Neural network resemble the brain

o Knowledge is acquired from the environment through a
learning process

e Connection strengths , known as synaptic weights, are used to
store the acquired knowledge
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—> Leaning algorithm, weights, topology
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Decepp Learrring and Daflfta Mrirnrrnng

Benefits of neural network

Nonlinearity : distributed nonlinearity

Input-output mapping

Adaptivity : retain / adapt

Evidential response : Decision + confidence

Contextual Information

Fault tolerance : Performance degrades gracefully
VLSI implementability : Network of simple component
Uniformity of analysis and design / Modular design
Neurobiological analogy
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Models of Neurons (1)

e Modeling of Neuron

Bias b,
?

Activation
function

#(-)

Vi

Industrial Engineering @ Kumoh National Institute of Technology
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Models of Neurons (2)

e Modeling
- Weight:  w, : j —>K

m
Summing Junction: U, = D> W, - X;
=1

Activation function: Y, = @#(u, +b,)

Activation

' function
v, =u.b -
k k ~k . (. 20)

Bias :
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v, =u, +b,
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Activation function : @(-)

e Activation function
— Threshold unit

1 if v=0
¢('):{o’ V<0

1
- Piece-wise linear A() = 1 (v—a)
b-a |

/ |0

d
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- Sigmoid A(V) = 1

-/
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Sigmoid, more

e Logistics function
- a: slope parameter

Increase “a”

p)=

1+e

¢ (V) =a-¢g(v)-(1-¢(v))

Industrial Engineering @ Kumoh National Institute of Technology

¢ And other many functions
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Feedback (1)

e And, feedback

X; (n)

X;(n) O U Y (N)

B
Vi (N) = A-[x; ()]
X, () = X; (n) + B[y, ()]
A
1— AB

Industrial Engineering @ Kumoh National Institute of Technology

Yk (n) = X; (n)
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Feedback (2)

X; (n) X;(n) W

w

—=w@l-wz )T =w> w'z"
1=0

Ve (M) =W W'z [x, ()]

27 [ (MI=%;(N=1)  y ()= > W [x,(n—D]
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Feedback (3)

(14 29

e Role of “w
- Case 1: converge

|wi|<1

- Case 2 : linearly diverge
|wi=1

- Case 3 : expontially diverge

Industrial Engineering @ Kumoh National Institute of Technology

|w|>1

Ve (M) = > W [x, (n—D)]
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Learning (1)

Bias b,

T

Activation
function

#()
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Learning (2)

e Redesign
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Learning (3)

e Error
e, (nN) =d,(n)—y,(n)

e Learning from “Error”
W (N +1) = w,; (N) + Aw,; (N)

Aw; (N) =77-€,(N) - X;(N)
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Hebbian Learning

e Donald Hebb’s postulate of leraning (1949)

- “When an axon of cell A 1s near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic changes take place in one or both cells
such that A’s efficiency as one of the cells firing B, 1s
increased”

e Hebbian Synapse

- If two neurons on either side of a synapse are activated
simultaneously, the synapse is strengthened

- If they are activated are asynchronously, the synapse is
weakened or eliminated.
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Decepp Learrring and Daflfta Mrirnrrnng

Competitive learning

e Competitive learning -> adaption

w(n)

n7-(X; —w_) If kK is winner
Aij _{ JO & ow
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Basics of Neural Network

e VC Dimension

e Nonlinear programming

- Unconstrained optimization techniques

e Steepest descent

e Newton’s method

e (Gauss-Netwon’s method

e Linear Least Square filter

e Least Mean Square algorithm
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VC Dimension (1)

e “Shattering” a set of instance

- A dichotomy of a set S is a partition of S into two disjoint
subset.

- A set of instances S is shattered by a function class F if and
only if for every dichotomy of S there exists some function in
F consistent with this dichotomy
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VC Dimension (2)

e Shattering
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VC Dimension (3)

e VC Dimension
- The Vapnik — Chervonenkis dimension

- VC (F), a function class F defined over sample space X is the
size of the largest finite subset of X shattered by F

- If arbitrarily large finite set of X can be shattered by F, then
VC (F) = “infinite”
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VC Dimension (4)

e VVC Dimension of Linear Decision Surface

- When F is a set of lines, and S a set of points, VC (F) =

- Set of size 4 cannot be shattered, for any combination of
points
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Unconstrained Optimization
Techniques

e How can we adjust W(i) to gradually minimize e(1)?
- Notethat e(i)=d(i)—y (i) =d@)—x"w(i)

~ in other words, we want to minimize the cost function £(w) _
with respect to the weight vector w = find optimal solution W

- Necessary condition for optimality
Ve(W)=0

V: a 7 8 1...’
[awl OW,
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Decepp Learrring and Daflfta Mrirnrrnng

Steepest Descent (1)

e lterative update algorithm

mine(Ww) = sW(n+1)) <s(w(n))

o Define the gradient vector , if Ve(w(n)) =g(n)

w(n+1) =w(n) —7g(n)

Aw(n) =w(n+1) —w(n) =—rg(n)
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Steepest Descent (2)

s(W(N+1)) < £(W(Nn))

f(x)=f(a)+ f (a)(x—a) + f"(a)(2>l<—a)2 4.,

s(w(n+1) = e(w(n))+ g’ (N)Aw(Nn)

e(w(n+1)) = e(w(n))—g' (n)-77-g(n)
=e(w(n)—nll g |
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Steepest Descent (3)

e Example : min x2 + x2

Industrial Engineering @ Kumoh National Institute of Technology
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Newton’s method

e Newton’s method

- A extension of steepest descent > second order term in the
Taylor series is used

- It is generally faster and shows a less erratic meandering
compared to the steepest descent method

- There are certain conditions to be met though, such as the
Hesslan matrix v2e (W)
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Gauss-Newton method (1)

e Energy function = Sum of error square

B(W) =2 > e, (W)?

ei(w)zei(wk)+[%} (w—w,)

W:Wk
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Gauss-Newton method (2)

e Jacobian Matrix J.(w)

oe() oe(d)
ow, OW,

oce(2) oe(2)
oW,

8e:(n)
ow,
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Gauss-Newton method (3)

e Example
e(x y):[el(x, y)}:[ X* +y? }
e, (X,y) cos(X) +sin(y)

o6 (X, y) e (xy)]

) ™ By B 2X 2y

J.(w) = oe,(x,y) oe,(xy)| [—sin(x) COS(Y)}
OX oy

- For (x,y) = (0.57, )

w7 7]
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Decepp Learrring and Daflfta Mrirnrrnng

Gauss-Newton method (4)

o AGAIN, o (W) =e (W, )+ J. (W) (W—w,)

B(W) =2 > e, (W)?

| e (W) [1P=]l & (W) 17 +2e(w, )" - I (W) - (W —w, )

(W_Wk)T - Je (W) Je(Wk)'(W_Wk)
Jo (W) -e(w)+J7 (W)-I. (W) - (W—w,)=0

w=w, —(J; W)-I. (W) -I; (W) e(w,)
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Linear Least-Square Filter (1)

o Given m input and 1 output function Y(i) = #(X{ -w,)
e(W)=d —[X,%,,--,x. ] -w  @(X)=X
d =[d,,d,,---,d. T’
e(w)=d—-—X-w
Ve(w) =—X"T
w=w, +(X"X)*X"(d—-Xw,)
—w, +(XTX)EXTd —(XTX)EXT Xw, )
—(XTX)tXTd
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Linear Least-Square Filter (2)

e Characteristics of LLS
- X does not need to be a square matrix

- The Jacobian of the error function only depends on the input,
and is invariant w.r.t. the weight w.

- Pseudo-inverse: X *

w=(XTX)'X"d = X"d
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Linear Least-Square Filter (3)

e Example
- Xandd
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east-Mean-Square algorithm (1)

e From energy function
1 n
8@@=§§}MWV
=1

W ~oe(w)
OW

e=d—x"-w

os(w)
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east-Mean-Square algorithm (2)

e Handling of 77

- The main problem arise because of the fixed 77
- One solution : Use a time varying learning rate 77(N) =

- More better alternative = use hybrid method called search-
then-converge

770
Nn) =
77(n) 1+n/t

e Where 7 : big number
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The Perceptron model

e Non-linear neuron model ( McCulloch-Pitts model)
- Objective : classify input vectors into two classes

1 1f v>0
O 1Ifv<o
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V=Zm:Wixi+b y=¢(v)={
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Boolean logic gates with Perceptron (1)

e “And” gate
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Boolean logic gates with Perceptron (2)

e Mechanism of Perceptron
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Boolean logic gates with Perceptron (3)

e Geometric interpretation
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The role of Bias

- Without the bias (t=0), learning is limited to adjustment of the
slope of the separating line passing through the origin
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Limitation of Perceptron

e LImitation

- Only functions where the 0 points and 1 points are clearly
linearly separable can be represented by perceptrons

- The geometric interpretation is generalizable to function of n
arguments, I.e. perceptron with n inputs plus on threshold (or
bias) unit.
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Generalization to n-dimension

e IN N dimension

4

(X, ¥7) o

\
\|

- In 3D, perceptron has a role of cutting plane

- For n-D input space, the decision boundary becomes a (n-1)-
Hyperplane (1-D less than the input space)
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Linear Separability (1)

e Characteristics of perceptron

- For function that take integer or real values are arguments and
output either O or 1

- Perceptron cannot represent such a function — not linear -
separable

Industrial Engineering @ Kumoh National Institute of Technology
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Linear Separability (2)

e In “XOR” gate : Minsky and Papert (1969)
R
N

- Perceptron cannot represent XOR
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Linear Separability (3)

etail, XOR gate

—

ONENO
O—=C
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Decepp Learrring and Daflfta Mrirnrrnng

Perceptron learning rule (1)

e Objective

- Given a linearly separable set of inputs that can belong to
class C1 or C2

- The goal of perceptron learning is to have
w'x>0 = C,

w'x<0 =C,
e Terminating condition

- All input satisfying  w(n)" x>0 = C,
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w(n)'x<0 = C,
- Then
w(n+1) =w(n)
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Perceptron learning rule (2)

e Learning rule

w(n+1) =w(n)—n(n)-x(n) <=w'x>0 and xeC,

w(n+1) =w(n)+7(n)-x(n) <=w'x<0 and xeC,

- Or, simply
w(n+1) =w(n)+77(n)-e(n)-x(N)

e(n) =d(n)—y(n)
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Summary of LMS

e SUmmary

- Adaptive filter using LMS algorithm and perceptron are
closely related

LMS and perceptron are different, however, since one uses
linear activation and the other hard limiters

LMS is used in continuous learning, while perceptrons are
trained for only a finite number of steps

Single-neuron or single-layer has severe limits : how can
multiple layers help?
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Again, XOR gate

e How can we handle XOR gate problem with perceptron
concept?

<)

&
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Simple Review (1)

e VC Dimension
- VC (Line) =3
- VC (Triangle) =?
- VC (Rectangle) = ?

¢ Unconstraint Nonlinear Programming

- Steepest Descent
- Newton

- Gauss-Newton e.(nN)=d, (n)—vy,(n)
- L.L.S Filter

W, (N +1) = w,; (N) + Aw, (N)
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Simple Review (1)

e Learning Process
- Linear Least Square Filter

w=(XTX)1XTd=X"*d
- Linear Mean Square

e=d—x"-w

oe(w)
vl

1 =W, +1n-X,-€,

—X

n—+
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Multi layer Perceptron (1)

e “From Haykin’s book™

= {:&.w - G
(stimulus) (response)
- F >U >

Input First Second Output
layer hidden hidden layer
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layer layer

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.




Dececepp Learrring and Darfta Mrirr772

e Characteristics of M.L.P

- Learning algorithm : “Backpropagation™ algorithm
e Forward pass : activate the network, layer by layer
e Backward pass : error signal backpropagates

- From output to hidden
- From hidden to input

- Activation function : sigmoid

Yy, = 1
b ye™

- |t can have many hidden layers
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Rearrangement of Activation function

1
¢(Vj) o 1 —av;

+€

¢'(v;) =ag(v;)d—-g(v)))

Industrial Engineering @ Kumoh National Institute of Technology

In Haykin's MLP model

¢'(v;) =o(v;)A-¢(v;)) (that is, a=1)
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Redesign

Neuron j Neuron k
P A

wyln) = b,(n)

X

vin) @(*) y,(nu/ wi(n) N vln) ¢(r)  v(n) -1 ;
— O Q ey(n)
j‘\ S

/

Industrial Engineering @ Kumoh National Institute of Technology

FIGURE 4.4 Signal-flow graph highlighting the details of output neuron k connected to hidden
neuron j.




MLP and Backpropagation (1)

0
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\
0
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\
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)
q
N

e Nonlinear decision surfaces
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MLP and Backpropagation (2)

e In XOR gate

sigmix+y-1.1) SigMyEi@mix +y-1.1}+sigm(-xy+1.13)-1)
— R A 0.
0.53
052

<One output> <Two Hidden, One Output>
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Decepp Learrring and Daflfta Mrirnrrnng

Error Gradient for a single sigmoid unit (1)

()

6W 6W22(k Yk

1 %,
==3% (dy -y
24 5i(k Yi)

1 0
:Ezk:z(dk _Yk)m(dk - Y)
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Error Gradient for a single sigmoid unit (2)

Vi | M
ov, )\ oW,

o _ 09(v,)
aVk aVk

= Y (1_ yk)

OV, _ Op(% W)
oW, ow

= Xk
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Backpropagation (1)

e For output unit, j

5] (_yj(l_yj)(dj _yj)
e For hidden unit, h

5h <~ Y (1_ yh) ijgj

jeoutput

o Update weight

Industrial Engineering @ Kumoh National Institute of Technology

W <—W;; + iji

iji = 775j X,
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Backpropagation (2)

e For output unit, j

5] < yj(l_yj)(dj _yj)

\ )\ }
|

|
¢'(v;) FError
e FoOr hidden unit, h

5h N yh(l_ yh) ijgj

jeoutput

\ )\ }
|

|
¢l (V _ ) Backpropagated
J

error



Decepp Learrring and Daflfta Mrirnrrnng

Derivation of Aw : output unit (1)

OE  OE 0y,
AWji :—nﬁiv—E an ayj an

Ji OE
ay 8y 2] %p&s
E(w) = Z(d -y,)°

Jeoutputs

OE _ OE OV,
ow;, v, ow,
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Derivation of Aw : output unit (2)

OE  OE 0y,
Ny Y OV,

—d )N
——(d,-y)%

J

,

v, OE  OE oy,

y; = o)) v, dy; v,
¢I(Vj) — yj (1_ yj)

N .
5‘3’](1 yj)

J

:_(dj _yj)yj(l_ yj)
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Derivation of Aw : output unit (3)

o Finally,

OE  OE OV,
ow, v, ow,

:_(dj _yj)yj(l_ yj)Xi
\ Y }Ly_/

o; =errorx ¢'(net)  input
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Derivation of Aw : hidden unit (1)

E _GE &, _OE,
ow, v, ow, v,

ok _ S OE ov = 2. —SW,y;(-y;)

kedownstream( j)
oV j kedownstream( j) aVk an

_ _5 M

k
kedownstream( j) aVj

_ 2_5 aVk ayi

’ _7J
kedownstream( j) 6yj aVj
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Derivation of Aw : hidden unit (2)

o Finally EoE N CE

aw@vaw av‘

oE
P Z_5kwkjyj(1_yj)

aVj kedownstream( j) \ |
|

¢'(net)
OE
AW, =—n——=1 yj(l_yj) Z5k Wi [Xi

6Wji kedownstream( j)

\ }
\ Y ) Y

¢'(net) error
Y5_

J
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Summary

8,(n) ‘Pl'(Avl(n))

O e(n)

wyi(n) 8i(n) @(vi(n))
* O < O ex(n)

e 0 e, (n)
Pm ,( Vm ; (n )) "

AW;; (n)=7- 5] (n)-y;(n)
\ J \ )\ J
| LYJ | |
Weight Learning Local gradient Input signal
correction rate
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