Weekly Schedule and Class Notes
  • Lecture notes : all notes will be posted in this section.
  • It is your responsibility to download, print and bring the notes to the class. Notes will be available 24 hours before each class.

 Week

Date

 Topic

 Reading

 Assignments

Notices and Dues

Notes

 1

09/06

1. Course Organization

/Introduction

 Lecture Note

 

 

[Link]

 2

09/13

2. Introduction to Edge computing

3. 3-tier architecture

4. Architecture of Embedded System

 Lecture Note

[Homework #1: Homepage]

 

[Homework #2: Edge setting]

  Homework #1 & #2's dues are on Sep. 18th Midnight

[Link]

3

09/20

5.Power and resistance control

6. Passive resistance and active resistance

7. Diaod control

8. Schematic and embedded code

 Lecture Note

[Homework #3: Diaod control]

  Homework #3's due is on Sep. 25th Midnight

 

 4

09/27

9. ADC control

10. I2C protocol, SCL, SDA

11. Edge/Mist/ Fog / Cloud computing

 Lecture Note

[Homework #4: ADC control]

  Homework #4's due is on Oct. 3rd Midnight

     

 5

10/04

12. Shift-register control

13. Matrix display (I)

 Lecture Note

   

 

6

10/06

14. Martrix display (II)

  Lecture Note

 

 

 

 7

10/11

15. Motro control (without relay)

16. MQTT (MQTT library)

17. Node-red (I)

18. Json file format

19. Rest API and real time data

 Lecture Note

[Homework #5: Motor & Button & Potentiometer control]

  Homework #5's due is on Oct. 20th Midnight

  

8

10/13

20. Fundamentals of Electronics

21.Fundamentals of Communications

 Lecture Note

   

 

9

10/25

Mid term

 

   

 

 10

11/01

22.MQTT Publishing

23. Node-red Dashboard

 Lecture Note

[Homework #6: Real-time data publishing]

  Homework #6's due is on Nov. 7th Midnight

[Link]

 11

11/08

24. Deep neural net & Deep Learning

25. Architecture of Neuron

26. Type  of activation function : Sigmoid, tanh

Lecture Note

 

 

 

 12

11/15

27. Steepest Gradient Method

28. Backpropagation (I)

29. Correlation Plot

30. Deep learning layer

Lecture Note

[Homework #7: Data analysis and deep layer design]

  Homework #7's due is on Nov. 20th Midnight

 

13

11/21

31. Deep Learning Implementation

Lecture Note

[Homework #8: Ddeep learning analysis]

 Homework #8's due is on Nov. 21st Midnight

 

14

11/22

32. Backpropagation (II)

33. Bias and AND/XOR node issues

34. Moment method and Adaptive methods (Moment, Adagrad,Adadelta, RMSProp, Adam)

 Lecture Note

   

  

 15

11/29

35. Signal Processing : Hz data analysis

36. Spectrum analysis : FFT, IFFT

37. MQTT publisher / Subscriber with Node-red

 Lecture Note

 

 

 

 16

12/06

Final exam