Weekly Schedule and Class Notes
  • Lecture notes : all notes will be posted in this section.
  • It is your responsibility to download, print and bring the notes to the class. Notes will be available 24 hours before each class.

 Week

Date

 Topic

 Reading

 Assignments

Notices and Dues

Notes

 1

09/06

1. Introduction

2. System and  Network

3. Data issues

 Lecture Note

 

 

1. Prediction in Network

2. Quantum Mechanics

 2

09/13

4. Stabale network Vs Unstable network

5. Differential  Equation-based representation

6. Brownian motion (I)

 Lecture Note

     

3

09/20

Reading day

(Korean Thanksgiving holiday)

 

 

 

 

4

09/27

7. Brownian motion (II)

8. Kolmogorove's Backward Equation

9. Geometric Brownian Motion

10. Riemmann-Stiletjes Integral

11. L2 Convergence

12. Ito-Integral

Lecture Note

Literature Review for Quantum-based data anaysis

 

 

5

10/04

13. Winer Process

14. Differential equation for Winder Process

Lecture Note

     

6

10/11

Reading days

 

 

 

 

7

10/18

15. Presentation for Quantum mechanism-based research studies

Lecture Note

 

Due for Homework #1

 

8

10/18

 16.Geometric Brownian Motion

17. Orinsten-Uhlenbect Process

18. Ito Lemma

Lecture Note

     

9

11/01

Midterm Exam

       

10

11/08

19. Ito Lemma, Cont'd

20. Geometric Brownian Motion (II)

Lecture Note

    1. Population growth model

11

11/15

21.  Deep Learning Implementation (I)

Lecture Note

   

G701

(Lecture room)

12

11/22

22.  Deep Learning Implementation (II) : Rucurrent Neural Network

23. RUL Estimation

Lecture Note

 

[Link]

G701

(Lecture room)

13

11/29

25. Python in Matlab

26. Activation functions and Data normalization

27. Classification Vs Prediction

Lecture Note

     

14

12/06

28. Variational Nonlinear Optimization for Deep Learning

Lecture Note

     

15

 12/13

Final Exam