Weekly Schedule and Class Notes
  • Lecture notes : all notes will be posted in this section.
  • It is your responsibility to download, print and bring the notes to the class. Notes will be available 24 hours before each class.

 Week

Date

 Topic

 Reading

 Assignments

Notices and Dues

Notes

 1

09/04

1. Course Organization

/Introduction

 Lecture Note

 

 

 

 2

09/11

2. Data Acquistion protocols and framework

3. Types of Mathematical programming

4. Data format (I) : JSON

 Lecture Note

[Homework #1 : Your own Homepage]

[Homework #2: Matlab & Python]

[Homework #3: Node-red]

[All homeworks's due is on Sep 17th, Midnight]

- Sufficient & Necessary Condition

- TCP/ MQTT

- Edge Computing

- Open API

3

09/18

5.Ordinary Network & Probabilistic Network

6. Rank and analysis of Linear Programming

7. Python test for "Nonlinear Programming"

8. Node-red Test for "REST API" & "Json Format"

 Lecture Note

[Homework #4 : Nonlinear Programming with Python]

 

[Homework #5 : Node-red with Json format]

[All homeworks's due is on Sep 24th, Midnight]

 

 4

09/25

9.Types of Network problems (Shortest path, maximal flow)

10. Basic variable and Nonbasic variable in Linear programming

11. Multivariate unconstraint programming

12. Steep Descent Gradient method

13. Moment & ADAM

 Lecture Note

   

 

 5

10/05

14. Nonlinear unconstraint optimization

15. Nonlinear constraint optimization

16. primal problem Vs Dual problem

17. Heuristics and local search

 Lecture Note

   

- Strong duality

- Week duality

6

10/09

18. Metaheuristics

19. Genetric algorithm

 Lecture Note

 

 

[Link]

7

10/23

20. Function call : Varargin, Varargout

21. Json format

 Lecture Note

     

 8

10/30

Mid-Term

 

     

 9

11/06

22. Node-red and Real time data monitoring

23. Issues in Deep learning

24. Quantum mechanics and Brownian Motion

25. Schreinger Equation

 Lecture Note

[Homework #6 : Real-time data monitoring using Node-red]

[Homeworks's due is at 18:00, on Nov 13th]

 

 10

11/13

26. Quatum Mechanics

27. Quantum Computing

 Lecture Note

   

[Link]

 11

11/20

28. Deep learning

29. Backpropagation

30. Issues in Deep Learning

 Lecture Note

     

 12

11/24

31. Implementation using Deep Learning

Lecture Note

  [Homework #7: Deep learning analysis]

[Homeworks's due is at 18:00, on Nov 27th]

 

 13

11/27

32. Bias & Layers (And / XOR node)

33. Adaptive & Momentum method (SGDM, Momentum, Adagard, RMSProp, Adadelta, ADAM)

34. Type of energy function (MSE type, Entropy type)

Lecture Note

     

 14

12/04

35. Nonfunctional data analysis

Lecture Note

     

15

12/18

Final exam

 Lecture Note