Weekly Schedule and Class Notes
  • Lecture notes : all notes will be posted in this section.
  • It is your responsibility to download, print and bring the notes to the class. Notes will be available 24 hours before each class.

 Week

Date

 Topic

 Reading

 Assignments

Notices and Dues

Notes

 1

03/04

1. Introduction

 Lecture Note

Homework #1

  Due for Homework #1

[9:00PM, March 10th]

[Link]

 2

03/11

2. Reinforcement Learning

3. Value iteration, policy iteration, policy search

4. Value Vs Q

5. Q and Policy update

6. Temporal distance learning

 Lecture Note

Homework #2

(model collapse)

 

 

 

 

3

03/18

7. Model collpase

8. Advantage & Asyncronous

9. A3C, AC, A2C

Lecture Note

     

4

03/25

11.  AC, deep understanding

12. On-Policy Vs Off-Policy

Lecture Note

Homework #3

(New types of DRL)

   

5

04/01

13.  Student Presentation (II)

14. Off policy & Importance sampling

Lecture Note

     

6

04/08

15. Type of DRL

16. Value based mechanisms: DQN, DDQN, Dueling, Rainbow DQN

17. Poicy based mechanisms : AC,A2C, A3C, TRPO, PPO

Lecture Note

Homework #4

(DRL architecture design)

   

7

04/15

18. AC-based Hybrid mechanism: DDPG, TD3

19. Soft AC architecture

20. Stochastic Process & OU process

Lecture Note

     

8

04/22

Midterm exam (I)

 

     

9

04/29

Midterm exam (II)

Lecture Note

     

10

05/13

  Reading day

 

     

11

05/20

22. Kolmogorov-Arnold Network (KAN)

23. Kolmogrov-Arnold Representation Theorem

24. Bezier nonlinear fitting

25. B-spline based nonlinear fitting (I)

Lecture Note

     

12

05/27

26. B-spline based nonlinear fitting (II)

27. NUBS, NURBS

28. KAN (II)

Lecture Note

     

13

05/21

29. KAN (III)

Lecture Note

     

14

06/03

Reading days

 

     

15

06/10

30.Summary of Deep Reinforcement Learning

31. Stochastic Processes - Brownian Motion, Ito Integral

Lecture Note

     

16

06/17

32. Stochastic Processes and DRL

Lecture Note

     

17

06/24

Final exam