
Embedded System

1. Introduction

CONTENTS

- 1. Embedded System
- 2. Real Time System
- 3. Embedded OS
- 4. Embedded System Application
- 5. Processor
- 6. CISC Vs RISC
- 7. ARM RISC
- 8. Application Processor (AP)
- 9. Multicore Processor
- 10. Appendix

1. Embedded System

• "Embedded"

Embedded System → Electronic Control System containing Computer Hardware & Software

• Contemporary ES \rightarrow Special Computer Unit with Microprocessor or Microcontroller for achieving special purposes

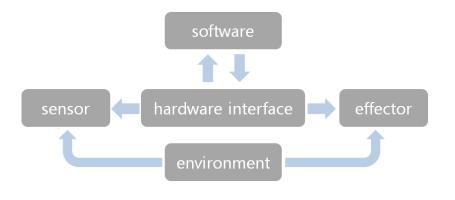
• PC \rightarrow General purpose, Not an ES !

• A computer system with special purposes \rightarrow ES \rightarrow Various Applications

1. Embedded System

• Example of ES

2. Real Time system


• In general, ES responses or treating with user's input or environments' changes

• General ES \rightarrow Exact Operation of Logically Defined Functions with the predefined sequences

■ RT system → ES + "on-time / in-time"

RT system

: The time of (Data Sensing + CPU handling + Actuator Handling) < the due date

- Early ES \rightarrow Designed only for achieving special objectives \rightarrow The existence of OS was too much
- Recent ES \rightarrow Network / Multimedia \rightarrow Complex architectures \rightarrow OS is needed!
- Recent ES = RT \rightarrow RTOS is introduced into ES
- Current \rightarrow ES' OS = RTOS

3. Embedded OS

Embedded OS → RTOS (Real Time OS)/ GPOS (General Purpose OS)

RTOS(Real Time OS)

- Generate output within the due date
- Not a fast processing, but JIT handling
- General RTOS considers
 - : response speed, interrupt), Efficiency, Scalability, Portability

GPOS(General Purpose OS)

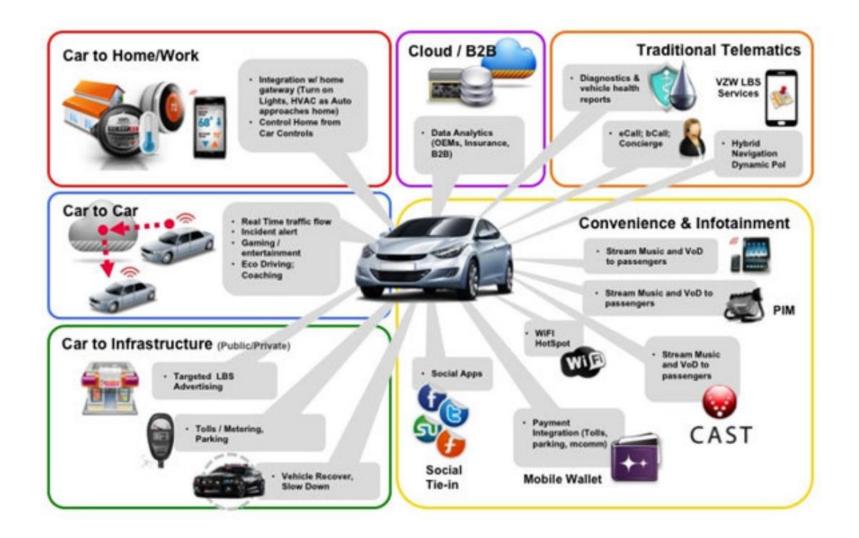
- GPOS = Windows NT, Windows 7/8/10, DOS, Linux, UNIX, Macintosh OS
- Needed Large Memory & ROM
- MMU (Memory Management Unit) is needed for handling Local File System, Paged Virtual Memory

• Market of ES > Market of General PC

Category	Contents			
Car	Smart Car, Car Integrated Control System, Car-to-Car Communication			
Vessel	Intelligent Vessel, e-navigation, Wireless Communication			
Military	NX military communication, Air force S/W, Drone Network			
Architect	U-city, EMP, Home network			
Medical System	Surgery Robot, U-Health			

Information Terminal

- PDA, Mobile phone, Tablet
- RTOS → GPOS



Traffic and Vehicle

- Car + ICT Convergence
- LBS

https://en.wikipedia.org/wiki/Google_driverless_car

Did you know Google's self-driving cars can't handle 99% of roads in the US?

Credit: Google

Many people have heard that Google's autonomous cars can "drive anywhere a car can legally drive," but it can't drive in snow, heavy rains, see "unmapped" traffic lights or stop signs. In other words, Google's self-driving cars can handle the "matrix" but it can't navigate on 99% of the roads in the U.S.

MORE LIKE THIS

Google's driverless car is truly hands-off -there's no steering wheel

100 self-driving Volvos to hit the streets of Sweden

Once your car's connected to the Internet, who guards your privacy?

on IDG Answers ≁ How does Simply Secure improve cloud security?

PC Connection | we solve IT

Innovative Technology Trusted Expertise Exceptional Service

Learn how you can streamline your virtualization project from start to finish.

WATCH VIDEOS »

SCM and Finance

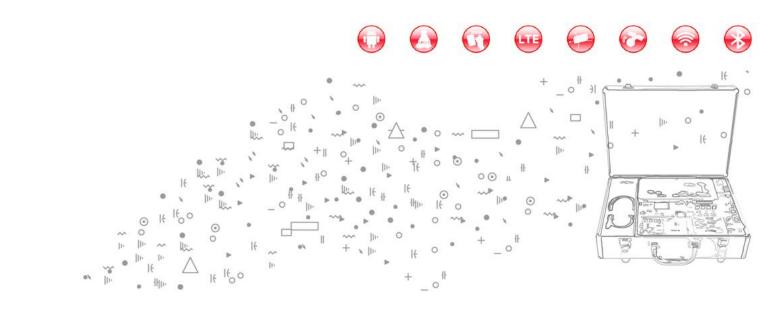
• POS, RF TAG, ATM , ID Card

Information Entertainment / Appliance

● Smart TV → TV + OS → Internet, Game, POS, SNS + TV

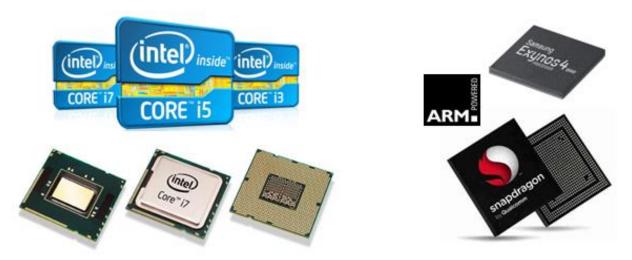
Industry and Control

• FA(Factory Automation) & PLC(Programmable Logic Controller)



Medical Application

• Virtual Solution, U-health



2. Embedded Processor

5. Processor

- The first ES development \rightarrow What is the processor of ES ?
- Processor → CPU
- When the CPU is fixed, OS is selected. Then, ES is builted
- General Classification of Processor \rightarrow With "Data bus Size" \rightarrow 8, 16, 32, 64, 128 bit

CISC, RISC type Processors (Intel Vs. ARM)

6. CISC Vs. RISC

Classification	CISC	RISC	
CPU instruction	Many Commands Various Length Many execution cycle	Fixed Length Size of Word = Size of Data bus The same execution cycle	
Circuit	Complex Simple		
Memory Usage	Highly efficient	Low efficiency	
Program	Short	Long	
Compiler Complicated Comparatively Sim		Comparatively Simple	
Manufacturer	Intel, AMD, Atmel	SAMSUNG, TI, Atmel, ST	

CISC- Complex Instruction Set Computer RISC – Reduced Instruction Set Computer

7. ARM RISC

● ARM(Advanced RISC Machine) → RISC-based 32bit embedded processor

RISC

- load-store architecture
- fixed 32bit command
- address type

ARM RISC 기능

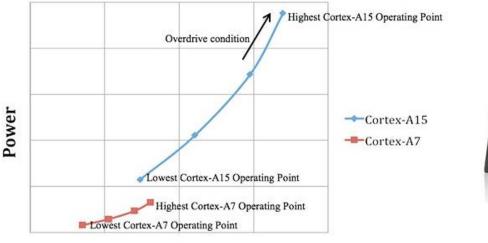
- 16 bit command is allowed
- Conditional command architecture
- optimal number of registers

Barrel Shift Register

- Barrel Shift is installed on ALU input layer \rightarrow Easy shift \rightarrow Fast Execution
- Less Memory Usage, Cheaper, Low energy consumption

8. Application Processor (AP)

Application Processor


- Mobile Device's processor
- Smart phone \rightarrow Communication is important \rightarrow Modem's processor (Subsidiary Processor) is important \rightarrow It substitute the existing main processor \rightarrow Application-specific processor \rightarrow Application Processor
- AP → two trends → 1) Multimedia driven AP or 2) Performance/Speed driven AP
- Current Trends → Performance / Speed driven AP
- General Smart Phone AP → ARM architecture
- ARM 7/9/11 → Cortex
- 2013 → Cortex A9 architecture
- AP + Memory + Controller \rightarrow one Chip \rightarrow System on Chip \rightarrow SoC
- 2015, 10 → Cortex architecture A57→ ARM v8-A

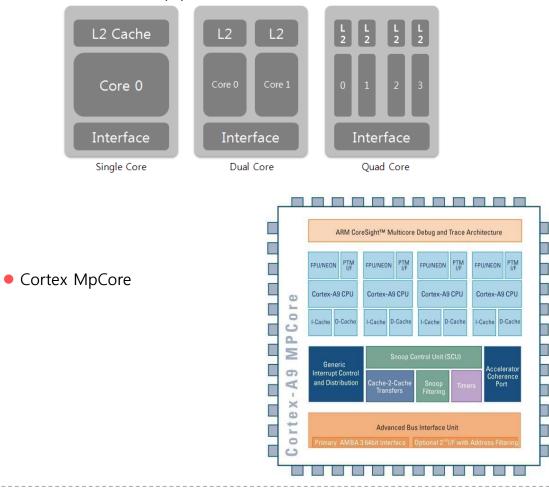
8. Application Processor (AP)

ARM Trends

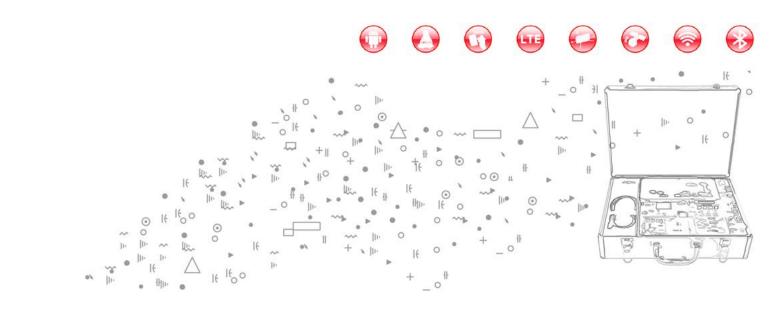
- High resolution display, Powerful Multimedia, Low Energy Consumption
- Big Little Architecture
 - "High Speed Core Set" + "Low Energy Core Set"

Performance

• The first Big Little Architecture AP \rightarrow Exynos5 Octa



Highlights


- 4X ARM Cortex A15 cores at 1.8GHz
- 4X ARM Cortez A7 cores at 1.2GHz
- 28nm Samsung manufacturing process
- Graphics: PowerVR SGX-544MP3 at 533MHz

9. Multicore Processor

- Current AP Trends → Multi cores
- Performance level up per a core < Multi core with common abilities cores

Appendix

A. ARM Cortex-A9

Туре	Architecture Ver.	Core Function		Cache
ARM11	ARMv6	ARM1136J(F)-S	SIMD, Jazelle DBX, (VFP) 8-stage Pipeline	variable, MMU
	ARMv6T2	ARM1156T2(F)-S	SIMD, Thumb-2, (VFP) 9-stage Pipeline	variable, MPU
	ARMv6KZ	ARM1176JZ(F)-S	SIMD, Jazelle DBX, (VFP)	variable MMU+TrustZon e
	ARMv6K	ARM11 MPCore	1-4 core SMP, SIMD Jazelle DBX, (VFP)	variable, MMU

B. ARM Cortex-A9

Туре	Architecture Ver.	Core	Function	Cache
Cortex		Cortex-A8	Application profile, VFP, NEON, Jazelle RCT, Th umb-2, 13-stage, perscalar pipeline	variable (L1+L2), MMU +TrustZone
	ARMv7-A	Cortex-A9	Application profile, (VFP), (NEON) Jazelle RCT and DBX, Thumb-2 Out-of-order speculative issue superscalar	MMU+TrustZone
		Cortex-A9 MPCore	As Cortex-A9, 1-4 코어 SMP	MMU+TrustZone
	ARMv7-R	Cortex-R4(F)	Embedded profile, (FPU)	variable Cache MPU optional
	ARMv7-M	Cortex-M3	Microcontroller profile, Thumb-2 only.	Cache, (MPU)
	ARMv6-M	Cortex-M1	FPGA targeted, Micro controller profile	tightly coupled memory optional.