
Operations Research

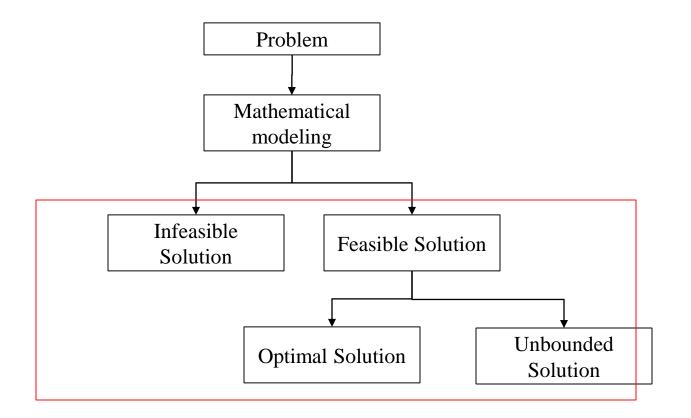
HYUNSOO LEE

Modeling Exercise (1)

• Nutrition

	Rice (100g)	Meat (500g)	Milk (500cc)	Egg (dozen)	Cabbage (100g)	Necessity / 1 day
Calorie (Kcal)	340	1,080	362	1,040	17	2,200
Protein (g)	6.5	167	19	78	1.3	70
Vitamin A (I.U.)	0	97	758	7,080	255	5,000
Iron (mg)	0.4	11	0.3	13	0.3	12.5
Carbohydrate (g)	52	30	25	0	5	-
Cholesterol (u)	0	22	11	120	0	-
Price (Won)	75	1,640	370	550	110	-

Maximum200g500g1,000cc3 dozen300gCapacity	-
---	---

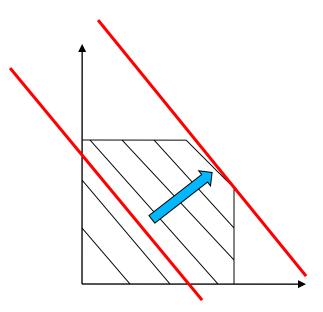

Modeling Exercise (2)

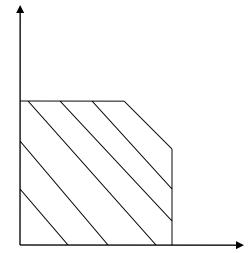
- One product \leftarrow two sub-products 5:2 \leftarrow 3 Materials
 - 3 facilities
 - Maximize the volume of the product per unit time

Facilities	Nee	ded volume / unit t	Production volume / unit time		
	Material #1	Material #2	Material #3	Sub-Product #1	Sub-Product #2
1	9	5	50	9	6
2	6	8	75	7	10
3	4	11	100	10	6
Maximum Capacity	200	4000	1850	_	-

Types of Solution

• Types of Solution in L.P.




Modeling Structure

- General forms of L.P.
 - Objective Function
 - Constraints
 - Non-negativity

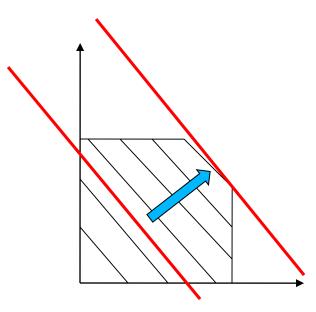
In the Constraints (1)

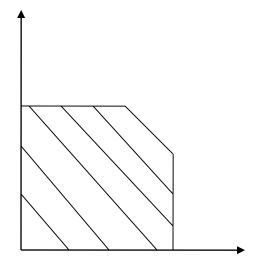
• Constraint

In the Constraints (2)

• Philosophy of Linear Programming

In the Constraints (3)




In the Objective Function

• Objective function

And, Next (1)

• Change of X

And, Next.... (2)

• Change of X

Example of L.P.

• Exercise

 $Min \qquad 2x_1 - x_2$ $S.t. \qquad -x_1 + x_2 \le 2$ $2x_1 + x_2 \le 6$ $x_1, x_2 \ge 0$

Summary of Linear Programming

• In L.P.

- Can you model a Problem?
- What's your first Basic solution?
- What's your objective function value?

- Limitations of L.P.
 - Two limitations