Operations Research

HYUNSOO LEE

Announcement

• Homework #2's due – March 19th

Exercise (I) – Toy Example

- In Factory
 - 2 material \rightarrow 2 Products

	Product 1	Product 2
Material 1	1	2
Material 2	3	1

- Material 1's maximum amount = 10
- Material 2's maximum amount = 10
- Maximum demand for Product 1 = 2
- Maximum demand for Product 2 = 3
- Profit for Product 1 = 3
- Profit for Product 2 = 2

Exercise (II)

• Solution \rightarrow ?

Exercise in Chapter II

• Procedures of Operations Research

Operations Research

• History of "Operations Research"

Operations Research

- Mathematical Programming
 - Linear Programming

- Non-Linear Programming

- Stochastic Programming

Mathematical Programming (1)

• General Forms of Mathematical Programming

Mathematical Programming (2)

• Linear Programming / Non-Linear Programming / Stochastic Programming

Linear Programming (1)

• General Forms of Linear Programming

Linear Programming (2)

- Characteristics
 - Convex / Concave
 - One or Line

Linear Programming (5)

• Philosophy of Linear Programming

Linear Programming (6)

• In Constraints

Linear Programming (7)

• In Objective Function

Linear Programming (8)

• In L.P.

- Can you model a Problem?
- What's your first Basic solution?
- What's your objective function value?

- Limitations of L.P.
 - Two limitations