Stochastic Optimization - Monte Carlo Methods -

Hyunsoo Lee, Ph. D

May 26, 2018

Contents

List of Figures

1 Announcement

Schedule May 28th : Sample-average approximation July 4th : Special Seminar (Brain-computer Interface) - Time :11:00 *∼* 12:00 / Seminar Room - TBA - No class on Regular class time July 11th: Final Exam (Closed or Take home)

2 Introduction

The Final exam coverage is the overall coverage to be discussed in the class.

Coverage *•* Fixed mathematical programming *•* Stochastic programming- two courses model (one shot approach) *•* Multi-stage programming & Dynamic Programming *•* Stochastic Linear Programming with Sub problems (Branch & Cut)

• Sample Average Approximation

The overall reference of this lecture is "J. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd edition, Springer".

General stochastic model is

$$
min \quad c^T + E_{\xi} Q(x, \xi) \tag{1}
$$

$$
s.t. \quad Ax = b \tag{2}
$$

$$
x \ge 0 \tag{3}
$$

General Stochastic model (Two-Stage Program with Fixed Recourse)

$$
min \quad z = c^T x + E_{\xi}[min \quad q(\omega)^T y(\omega)] \tag{4}
$$

$$
s.t. \quad Ax = b \tag{5}
$$

$$
T(\omega)x + Wy(\omega) = h(\omega)
$$
\n(6)

$$
x \ge 0, \quad y(\omega) \ge 0 \tag{7}
$$

The main problem is

$$
min \quad z = c^T x + Q \tag{8}
$$

$$
s.t. \quad Ax = b \tag{9}
$$

$$
x \ge 0 \tag{10}
$$

Then, the sub problem is

$$
min \quad q(\omega)^T y(\omega) \tag{11}
$$

$$
s.t. \quad T(\omega)x + Wy(\omega) = h(\omega) \tag{12}
$$

$$
y(\omega) \ge 0 \tag{13}
$$

3 Importance Sample in the L-shape method

3.1 Introduction

$$
Q^{v}(x) = \sum_{k=1}^{v} \frac{Q(x, \xi^{k})}{v}
$$
\n(14)

For a stochastic linear program is

$$
min \quad c^T x + \frac{1}{v} \sum_{k=1}^v q_k^T y_k \tag{15}
$$

$$
s.t. \quad Ax = b \tag{16}
$$

$$
T_k x + W y_k = h_k \tag{17}
$$

$$
x \ge 0, \quad y_k \ge 0 \tag{18}
$$

Then, a stochastic nonline program is

$$
min \t f^{1}(x) + \frac{1}{v} \sum_{k=1}^{v} q_{k}^{T} y_{k}
$$
\t(19)

3.2 Sample size v and Sample Condition

how do we increase the sample size? The bigger v is the better.

3.3 L-shaped structure

Monte Carlo estimate $\xi^1, \xi^2, ..., \xi^v$ ~ the sample size v under the given an iterate *x s*

$$
Q^v(x^s) = \frac{1}{v} \sum_{i=1}^v Q(x^s, \xi^i)
$$
\n(20)

Then, we want to calculate $Q(x, \xi^i)$, instead of $Q(x^s, \xi^i)$

$$
Q(x,\xi^i) \ge Q(x^s,\xi^i) + (\pi_s^i)^T (x - x^s) \quad \text{for all } x \tag{21}
$$

where,

$$
\nabla Q(x^s) \tag{22}
$$

$$
\pi_s^i \in \partial Q(x^s, \xi^i) \tag{23}
$$

$$
\bar{\pi}_s^v = \frac{1}{v} \sum_{i=1}^v \pi_s^i
$$
\n(24)

$$
Q^{v}(x^{s}) + (\bar{\pi}_{s}^{v})^{T}(x - x^{s}) = LB_{s}^{v}(x)
$$
\n(25)

$$
Q^{v}(x) = \frac{1}{v} \sum_{i=1}^{v} Q(x, \xi^{i}) \ge L B_{s}^{v}(x)
$$
\n(26)

By C.L.T, \sqrt{v} X RHS \rightarrow asymptotically normally distributed with a mean value

$$
\sqrt{v}(Q(x^s) + \nabla Q(x^s)^T (x - x^s))
$$
\n(27)

So,

$$
Q(x) \ge Q^{v}(x^{s}) + (\pi_{s}^{v})^{T}(x - x^{s}) - \epsilon_{s}(x)
$$
\n(28)

where $\epsilon_s(x)$ is an error term with mean 0 and Variance $\frac{1}{v} \rho^s(x)$

At iteration s, L-shaped method involves

$$
min \quad c^T x + \theta \tag{29}
$$

$$
s.t. \quad Ax = b,\tag{30}
$$

$$
D_l x \ge d_l, \quad l = 1, ..., r,
$$
\n(31)

$$
E_l x + \theta \ge e_l, \quad l = 1, \dots, s,
$$
\n
$$
(32)
$$

$$
x \ge 0 \tag{33}
$$

L-Shaped function is created by associating one set of the second-stage decision, *yk*.

$$
min \quad c^T + \sum_{k=1}^{K} p_k q_k^T y_k \tag{34}
$$

$$
s.t. \quad Ax = b \tag{35}
$$

$$
T_k x + W y_k = h_k, \quad k = 1, \dots, K
$$
\n(36)

$$
x \ge 0, \quad y_k \ge 0, \quad k = 1, ..., K
$$
\n(37)

Figure 1: Block structure of the two-stage extensive form

Figure 2: Block structure of the two-stage dual form

3.4 L-Shaped Algorithm

Step 0: Set $r = s = v = 0$ Step 1 : Set $v = v + 1$. Then solve the M.P.

$$
min \quad z = c^T x + \theta \tag{38}
$$

$$
s.t. \quad Ax = b \tag{39}
$$

$$
D_l x \ge d_l, \quad l = 1, ..., r \tag{40}
$$

$$
E_l x + \theta \ge e_l, \quad l = 1, ..., s \tag{41}
$$

$$
x \ge 0, \quad 0 \in R \tag{42}
$$

In (40), the equation is the "Cut".

Suppose that the optimal solution is (x^v, θ^v)

Step 2 : Check if $x \in K_2$. If not, add (40) and Step 1. Otherwise go to Step 3 Step 3: for k=1,...K, solve the linear program

$$
min \quad w = q_k^T y \tag{43}
$$

$$
s.t. Wy = h_k - T_k x^v \tag{44}
$$

$$
y \ge 0 \tag{45}
$$

Let π_k^v be the multiplier for (43)-(45) in Problem k.

$$
E^{s+1} = \sum_{k=1}^{K} p_k \cdot (\pi_k^v)^T T_k \tag{46}
$$

$$
e_{s+1} = \sum_{k=1}^{K} p_k \cdot (\pi_k^v)^T h_k \tag{47}
$$

Let $w^v = e_{s+1} - E_{s+1}x^v$. If $\theta^v \geq w^v$, the x^v is the optimal solution. Otherwise, set $s = s + 1$, add to (41) and go to Step 1.

3.5 The interpretation of L-shaped function

The master problem : (38-42). It consists of finding a proposal x, sent to the second stage. Two types of constraints are sequentially added.

