

Artificial Intelligence

 Basics in Neural Net/ Backpropagation

HYUNSOO LEE

Chapter 7. Neural Network

● Chapter 7.1 : Basics in Neural Network

– Related fields

● Machine Learning

● Pattern Analysis

– Motivation

● Current Mathematical control “Too load”

● Another method “Think like “Human’s brain”

● Reference

– Simon Haykin, “Neural Network : A Comprehensive
Foundation”, 2nd , Prentice-Hall, 1999

Human Brain (1)

● Neuron

– Dendrite

– Soma

– Axon terminal

– Contact dendrite

Human Brain (2)

● Human brain : Arbib (1987)

– Stimulus Receptors (Neural Net) Effectors
Response

– Pioneer : Santiago Ramon y Cajal, a Spanish Neuroanatomist
who introduced neurons as a fundamental unit of brain
function

– Neuron are slow : 10-3 Vs 10 -9

– Highly energy efficient : 10-16 J Vs 10 -6 J

– Huge number of neurons and connections :

● 1010 Neurons & 6 X 10 13 Connection

Human Brain (3)

● 5 or 6

Human Brain (4)

● Human brain “Computes” in an entirely different way from
conventional digital computers

● The brain is highly complex, nonlinear and parallel

● Organization or neurons to perform task much faster than
computers

– Typical time taken in visual recognition tasks is 100~200ms

● Key features of the biological brain

– experience shapes the wiring through plasticity and hence learning
becomes the central issues in neural networks

Neural Network

as an adaptive machine

● Neural Network

– A massively parallel distributed processor made up of simple
processing units, which has a natural propensity for storing
experimental knowledge and making it available for use

– Neural network resemble the brain

● Knowledge is acquired from the environment through a
learning process

● Connection strengths , known as synaptic weights, are used to
store the acquired knowledge

 Leaning algorithm, weights, topology

Benefits of neural network

● Nonlinearity : distributed nonlinearity

● Input-output mapping

● Adaptivity : retain / adapt

● Evidential response : Decision + confidence

● Contextual Information

● Fault tolerance : Performance degrades gracefully

● VLSI implementability : Network of simple component

● Uniformity of analysis and design / Modular design

● Neurobiological analogy

Models of Neurons (1)

● Modeling of Neuron

1x

2x

mx

…
..

…
..

1kw

2kw

kmw

)(
ky

Activation

function
Output

kbBias

kv

ku

Models of Neurons (2)

● Modeling

– Weight :

– Summing Junction:

– Activation function:

– Bias :

kjwkj :

m

j

jkjk xwu
1

)(kkk buy

kkk

kkk

buv

buv

Activation function :

● Activation function

– Threshold unit

– Piece-wise linear

– Sigmoid

)(

0

0
,

0

1
)(

v

vif

va

bva

bv

av
ab

 ,

0

)(
1

1

)(

a b

ave
v

1

1
)(

Sigmoid, more

● Logistics function

– a : slope parameter

● And other many functions

Increase “a”

ave
v

1

1
)(

))(1()()(' vvav

Feedback (1)

● And, feedback

)(nx j)(nyk

)(' nx j A

B

)]([)(' nxAny jk

)]([)()(' nyBnxnx kjj

)(
1

)(nx
AB

A
ny jk

Feedback (2)

)(nx j

)(nyk

)(' nx j A

B

)(nx j

)(nyk

)(' nx j w

1z

 0

11

1
)1(

11 l

ll zwwwzw
wz

w

AB

A

0

)]([)(
l

j

ll

k nxzwwny

)()]([lnxnxz jj

l

0

1)]([)(
l

j

l

k lnxwny

Feedback (3)

● Role of “w”

– Case 1 : converge

– Case 2 : linearly diverge

– Case 3 : expontially diverge

0

1)]([)(
l

j

l

k lnxwny

1|| w

1|| w

1|| w

Learning (1)

1x

2x

mx

…
..

…
..

1kw

2kw

kmw

)(
ky

Activation

function
Output

kbBias

kv

ku

Learning (2)

● Redesign

)(1 nwk

)(2 nwk

)(nkmw

)(nwkj

…
..

)(nkv
)(nky

)(1

)(nke

)(ndk

Learning (3)

)()()(nyndne kkk

● Error

● Learning from “Error”

)()()(nxnenw jkkj

)()()1(nwnwnw kjkjkj

Hebbian Learning

● Donald Hebb’s postulate of leraning (1949)

– “When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic changes take place in one or both cells
such that A’s efficiency as one of the cells firing B, is
increased”

● Hebbian Synapse

– If two neurons on either side of a synapse are activated
simultaneously, the synapse is strengthened

– If they are activated are asynchronously, the synapse is
weakened or eliminated.

Competitive learning

● Competitive learning adaption

x

)(nw

)(nwx

))((nwx
)1(nw

ow

winneriskifwx
w

kjj

kj ,
0

)(

Basics of Neural Network

● VC Dimension

● Nonlinear programming

– Unconstrained optimization techniques

● Steepest descent

● Newton’s method

● Gauss-Netwon’s method

● Linear Least Square filter

● Least Mean Square algorithm

VC Dimension (1)

● “Shattering” a set of instance

– A dichotomy of a set S is a partition of S into two disjoint
subset.

– A set of instances S is shattered by a function class F if and
only if for every dichotomy of S there exists some function in
F consistent with this dichotomy

VC Dimension (2)

● Shattering

VC Dimension (3)

● VC Dimension

– The Vapnik – Chervonenkis dimension

– VC (F), a function class F defined over sample space X is the
size of the largest finite subset of X shattered by F

– If arbitrarily large finite set of X can be shattered by F, then
VC (F) = “infinite”

VC Dimension (4)

● VC Dimension of Linear Decision Surface

– When F is a set of lines, and S a set of points, VC (F) =

– Set of size 4 cannot be shattered, for any combination of
points

Unconstrained Optimization

Techniques

● How can we adjust W(i) to gradually minimize e(i)?

– Note that

– in other words, we want to minimize the cost function
with respect to the weight vector w find optimal solution

– Necessary condition for optimality

)()()()()(iwxidiyidie T

)(w
*w

0)(* w
T

mwww

 ,,,

21

T

mwww
w

 ,,,)(

21

*

Steepest Descent (1)

● Iterative update algorithm

● Define the gradient vector , if

)(min w))(())1((nwnw

)()()1(ngnwnw

)())((ngnw

)()()1()(ngnwnwnw

Steepest Descent (2)

))(())1((nwnw

)()())(())1((nwngnwnw T

2||)(||))((

)()())(())1((

ngnw

ngngnwnw T

!2

))((
))(()()(

2''
' axaf

axafafxf

Steepest Descent (3)

● Example : 2

2

2

1min xx

Newton’s method

● Newton’s method

– A extension of steepest descent second order term in the
Taylor series is used

– It is generally faster and shows a less erratic meandering
compared to the steepest descent method

– There are certain conditions to be met though, such as the
Hessian matrix

)(2 w

Gauss-Newton method (1)

● Energy function Sum of error square

n

i

i wew
1

2)(
2

1
)(

 k

T

ww

i
kii ww

w

e
wewe

k

)()(

 kkekii wwwJwewe)()()(

Gauss-Newton method (2)

● Jacobian Matrix)(wJe

n

n

n

e

w

ne

w

ne

w

ne

w

e

w

e

w

e

w

e

w

e

w

e

wJ

)()()(

)2()2()2(

)1()1()1(

)(

21

21

21

Gauss-Newton method (3)

● Example

– For (x,y) =

)sin()cos(),(

),(
),(

22

2

1

yx

yx

yxe

yxe
yxe

)cos()sin(

22

),(),(

),(),(

)(
22

11

yx

yx

y

yxe

x

yxe

y

yxe

x

yxe

wJe

),5.0(

11

2
)(

wJ e

Gauss-Newton method (4)

● Again, kkekii wwwJwewe)()()(

 kkek

T

e

T

k

kke

T

kkii

wwwJwJww

wwwJwewewe

)()(

)()(2||)(||||)(|| 22

n

i

i wew
1

2)(
2

1
)(

 0)()()()(kkek

T

ekk

T

e wwwJwJwewJ

)()())()((1

kk

T

ekek

T

ek wewJwJwJww

Linear Least-Square Filter (1)

● Given m input and 1 output function)()(i

T

i wxiy

xx)(wxxxdwe T

n],,,[)(21

T

ndddd],,,[21

wXdwe)(

TXwe)(

)()(1

k

TT

k XwdXXXww

))()(11

k

TTTT

k XwXXXdXXXw

dXXX TT 1)(

Linear Least-Square Filter (2)

● Characteristics of LLS

– X does not need to be a square matrix

– The Jacobian of the error function only depends on the input,
and is invariant w.r.t. the weight w.

– Pseudo-inverse :

dXdXXXw TT 1)(

X

Linear Least-Square Filter (3)

● Example

– X and d

45

63

73

710

X

22

31

36

40

d ?w

Least-Mean-Square algorithm (1)

● From energy function

n

i

i wew
1

2)(
2

1
)(

w

we
we

w

w

)(
)(

)(

wxde T

x
w

we

)(
)(

)(
wxe

w

w

nnnn exww 1

Least-Mean-Square algorithm (2)

● Handling of

– The main problem arise because of the fixed

– One solution : Use a time varying learning rate

– More better alternative use hybrid method called search-
then-converge

● Where : big number

n

c
n)(

/1
)(0

n
n

The Perceptron model

● Non-linear neuron model (McCulloch-Pitts model)

– Objective : classify input vectors into two classes

m

i

ii bxwv
1

0

0

0

1
)(

vif

vif
vy

Boolean logic gates with Perceptron (1)

● “And” gate

● “Or” gate

● “Not”

AND

t=1.5

W1=1

w2=1

-1

AND

t=0.5

W1=1

w2=1

-1

AND

T=-0.5

W1=-1

-1

Boolean logic gates with Perceptron (2)

● Mechanism of Perceptron

AND

t

W0

W1

-1

I1

I0

0I

1I

1w

t

1

0

w

w

101100 tIwIw

001100 tIwIw

Boolean logic gates with Perceptron (3)

● Geometric interpretation

101100 tIwIw

1

0

1

0
1

w

t
I

w

w
I

11

0

w

t
x

w

w
y

The role of Bias

● Bias

– Without the bias (t=0), learning is limited to adjustment of the
slope of the separating line passing through the origin

AND

t

W0

W1

-1

I1

I0

0I

1I

1w

t

1

0

w

w

Limitation of Perceptron

● Limitation

– Only functions where the 0 points and 1 points are clearly
linearly separable can be represented by perceptrons

– The geometric interpretation is generalizable to function of n
arguments, i.e. perceptron with n inputs plus on threshold (or
bias) unit.

Generalization to n-dimension

● In N dimension

– In 3D, perceptron has a role of cutting plane

– For n-D input space, the decision boundary becomes a (n-1)-
Hyperplane (1-D less than the input space)

AND

d

a

c

-1

y

x

z

b

),,(zyx

),,(000 zyx

Linear Separability (1)

● Characteristics of perceptron

– For function that take integer or real values are arguments and
output either 0 or 1

– Perceptron cannot represent such a function – not linear -
separable

Linear Separability (2)

● In “XOR” gate : Minsky and Papert (1969)

– Perceptron cannot represent XOR

0

0

1

1

Linear Separability (3)

● In detail, XOR gate

I0 I1 XOR

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

101100 tIwIw

Perceptron learning rule (1)

● Objective

– Given a linearly separable set of inputs that can belong to
class C1 or C2

– The goal of perceptron learning is to have

● Terminating condition

– All input satisfying

– Then

10 CxwT

20 CxwT

10)(Cxnw T

20)(Cxnw T

)()1(nwnw

Perceptron learning rule (2)

● Learning rule

– Or, simply

20)()()()1(Cxandxwnxnnwnw T

10)()()()1(Cxandxwnxnnwnw T

)()()()()1(nxnennwnw

)()()(nyndne

Summary of LMS

● Summary

– Adaptive filter using LMS algorithm and perceptron are
closely related

– LMS and perceptron are different, however, since one uses
linear activation and the other hard limiters

– LMS is used in continuous learning, while perceptrons are
trained for only a finite number of steps

– Single-neuron or single-layer has severe limits : how can
multiple layers help?

Again, XOR gate

● How can we handle XOR gate problem with perceptron
concept?

0

0

1

1

Simple Review (1)

● VC Dimension

– VC (Line) = 3

– VC (Triangle) = ?

– VC (Rectangle) = ?

● Unconstraint Nonlinear Programming

– Steepest Descent

– Newton

– Gauss-Newton

– L.L.S Filter

)()()1(nwnwnw kjkjkj

)()()(nyndne kkk

Simple Review (1)

● Learning Process

– Linear Least Square Filter

– Linear Mean Square

dXdXXXw TT 1)(

n

i

i wew
1

2)(
2

1
)(

w

we
we

w

w

)(
)(

)(

wxde T

x
w

we

)(

)(
)(

wxe
w

w

nnnn exww 1

Multi layer Perceptron (1)

● “From Haykin’s book”

Multi layer Perceptron (2)

● Characteristics of M.L.P

– Learning algorithm : “Backpropagation” algorithm

● Forward pass : activate the network, layer by layer

● Backward pass : error signal backpropagates

– From output to hidden

– From hidden to input

– Activation function : sigmoid

– It can have many hidden layers

javj
e

y

1

1

Rearrangement of Activation function

javj
e

y

1

1

javj
e

v

1

1
)(

))(1)(()(' jjj vvav

))(1)(()(' jjj vvv
In Haykin’s MLP model

 (that is, a=1)

Redesign

MLP and Backpropagation (1)

● Nonlinear decision surfaces

MLP and Backpropagation (2)

● In XOR gate

<One output> <Two Hidden, One Output>

Error Gradient for a single sigmoid unit (1)

 n

kkk dx
1

),(

k

kk

ii

yd
ww

E 2)(
2

1

k

kk

i

yd
w

2)(
2

1

k

kk

i

kk yd
w

yd)()(2
2

1

k i

k
kk

w

y
yd)(

i

k

k k

k
kk

w

v

v

y
yd)(

Error Gradient for a single sigmoid unit (2)

i

k

k k

k
kk

i w

v

v

y
yd

w

E
)(

)1(
)(

kk

k

k

k

k yy
v

v

v

y

ki

i

T

k

i

k x
w

wx

w

v
,

)(

k

kikkkk

i

xyyyd
w

E
,)1()(

Backpropagation (1)

● For output unit, j

● For hidden unit, h

● Update weight

))(1(jjjjj ydyy

outputj

jjhhh wyy)1(

jijiji www

ijji xw

Backpropagation (2)

● For output unit, j

● For hidden unit, h

))(1(jjjjj ydyy

)(' jv Error

outputj

jjhhh wyy)1(

)(' jv Backpropagated

error

Derivation of Δw : output unit (1)

ji

ji
w

E
w

outputsj

jj ydwE 2)(
2

1
)(

ji

j

jji w

v

v

E

w

E

j

j

jj v

y

y

E

v

E

outuptsj

jj

jj

yd
yy

E 2)(
2

1

2)(
2

1
jj

j

yd
y

j

jj

jj
y

yd
yd

)(
)(

2

1
2

)(jj yd

Derivation of Δw : output unit (2)

j

j

jj

j

j

jj v

y
yd

v

y

y

E

v

E

)(

j

j

v

y

)(jj vy

)1()(' jjj yyv

)1(jj

j

j
yy

v

y

)1()(jjjj

j

j

jj

yyyd
v

y

y

E

v

E

Derivation of Δw : output unit (3)

● Finally,

)1()(jjjj

ji

j

jji

yyyd
v

y

y

E

v

E

i

ji

j
x

w

v

ijjjj

ji

j

jji

xyyyd
w

v

v

E

w

E
)1()(

input)(' neterrorj

Derivation of Δw : hidden unit (1)

i

jji

j

jji

x
v

E

w

v

v

E

w

E

j

k

jdownstreamk kj v

v

v

E

v

E

)(

j

k

jdownstreamk

k
v

v

)(

j

j

j

k

jdownstreamk

k
v

y

y

v

)(

j

j

kj

jdownstreamk

k
v

y
w

)(

)1(
)(

jjkj

jdownstreamk

k yyw

Derivation of Δw : hidden unit (2)

● Finally

i

jji

j

jji

x
v

E

w

v

v

E

w

E

ikj

jdownstreamk

kjj

ji

ji xwyy
w

E
w

)(

)1(

error)(' net

)1(
)(

jjkj

jdownstreamk

k

j

yyw
v

E

)(' net

j

Summary

)()()(nynnw ijji

Input signal Local gradient Learning

rate

Weight

correction

