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Chapter 7. Neural Network 

● Chapter 7.1 : Basics in Neural Network 

– Related fields   

● Machine Learning 

● Pattern Analysis 

– Motivation 

● Current Mathematical control  “Too load” 

● Another method  “Think like “Human’s brain” 

 

● Reference 

– Simon Haykin, “Neural Network : A Comprehensive 
Foundation”, 2nd , Prentice-Hall, 1999 



Human Brain (1) 

● Neuron 

– Dendrite 

– Soma 

– Axon terminal 

– Contact dendrite 



Human Brain (2) 

● Human brain : Arbib (1987) 

– Stimulus  Receptors   (Neural Net)  Effectors  
Response 

 

– Pioneer  : Santiago Ramon y Cajal, a Spanish Neuroanatomist 
who introduced neurons as a fundamental  unit of brain 
function 

– Neuron are slow : 10-3 Vs 10 -9 

– Highly energy efficient : 10-16 J Vs 10 -6 J 

– Huge number of  neurons and connections  :  

● 1010 Neurons  & 6 X 10 13  Connection 



Human Brain (3) 

● 5 or 6 



Human Brain (4) 

● Human brain “Computes” in an entirely different way from 
conventional digital computers 

 

● The brain is highly complex, nonlinear and parallel 

 

● Organization or neurons to perform task much faster than 
computers 

– Typical time taken in visual recognition tasks is 100~200ms 

 

● Key features of the biological brain  

– experience shapes the wiring through plasticity and hence learning 
becomes the central issues in neural networks 



Neural Network  

as an adaptive machine 

● Neural Network 

– A massively parallel distributed processor  made up of simple 
processing units, which has a natural propensity for storing 
experimental knowledge and making it available for use 

– Neural network resemble the brain 

● Knowledge is acquired from the environment through a 
learning process 

● Connection strengths , known as synaptic weights, are used to 
store the acquired knowledge  

 

 Leaning algorithm, weights, topology 



Benefits of neural network 

● Nonlinearity : distributed nonlinearity 

● Input-output mapping 

● Adaptivity : retain / adapt 

● Evidential response : Decision + confidence 

● Contextual Information 

● Fault tolerance : Performance degrades gracefully 

● VLSI implementability : Network of simple component 

● Uniformity of analysis and design / Modular design 

● Neurobiological analogy 



Models of Neurons (1) 

● Modeling of Neuron 
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Models of Neurons (2) 

● Modeling 

– Weight : 

 

– Summing Junction: 

 

– Activation function: 

 

– Bias :  
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Activation function :  

● Activation function 

– Threshold unit 

 

 

 

– Piece-wise linear 

 

 

 

– Sigmoid 
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Sigmoid, more 

● Logistics function 

– a : slope parameter 

 

 

 

 

 

 

 

● And other many functions 
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Feedback (1) 

● And, feedback 
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Feedback (2) 
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Feedback (3) 

● Role of “w” 

– Case 1 : converge  

 

 

– Case 2 : linearly diverge 

 

 

– Case 3 : expontially diverge 






 
0

1 )]([)(
l

j

l

k lnxwny

1|| w

1|| w

1|| w



Learning (1) 
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Learning (2) 

● Redesign 
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Learning (3) 

)()()( nyndne kkk 

● Error 

 

 

● Learning from “Error” 
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Hebbian Learning 

● Donald Hebb’s postulate of leraning (1949) 

– “When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently  takes part in firing it, some growth 
process or metabolic changes take place in one or both cells 
such that A’s efficiency as one of the cells firing B, is 
increased” 

 

● Hebbian Synapse 

– If two neurons on either side of a synapse are activated 
simultaneously, the synapse is strengthened 

– If they are activated are asynchronously, the synapse is 
weakened or eliminated.  



Competitive learning 

● Competitive learning   adaption 
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Basics of Neural Network 

● VC Dimension 

 

● Nonlinear programming  

– Unconstrained optimization techniques 

● Steepest descent  

● Newton’s method 

● Gauss-Netwon’s method 

● Linear Least Square filter 

● Least Mean Square algorithm 



VC Dimension (1) 

● “Shattering” a set of instance  

– A dichotomy of a set S is a partition of S into two disjoint 
subset. 

 

– A set of instances S is shattered by a function class F if and 
only if for every dichotomy of S there exists some function in 
F consistent with this dichotomy 



VC Dimension (2) 

● Shattering 



VC Dimension (3) 

● VC Dimension  

– The Vapnik – Chervonenkis dimension 

 

– VC (F), a function class F defined over sample space X is the 
size of the largest finite subset of X shattered by F 

 

– If arbitrarily large finite set of X can be shattered by F, then 
VC (F) = “infinite” 



VC Dimension (4) 

● VC Dimension of Linear Decision Surface 

 

 

– When F is a set of lines, and S a set of points, VC (F) = 

 

 

– Set of size 4 cannot be shattered, for any combination of 
points 



Unconstrained Optimization 

Techniques 

● How can we adjust W(i) to gradually minimize e(i)? 

– Note that  

– in other words, we want to minimize the cost function              
with respect to the weight vector w  find optimal solution 

– Necessary condition for optimality  
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Steepest Descent (1) 

● Iterative update algorithm 

 

 

● Define the gradient vector , if 
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Steepest Descent (2) 
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Steepest Descent (3) 

● Example : 2
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Newton’s method 

● Newton’s method 

– A extension of  steepest descent  second order term in the 
Taylor series is used 

 

– It is generally faster and shows a less erratic meandering 
compared to the steepest descent method 

 

– There are certain  conditions to be met though, such as the 
Hessian matrix  
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Gauss-Newton method (1) 

● Energy function  Sum of error square 
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Gauss-Newton method (2) 

● Jacobian Matrix )(wJe
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Gauss-Newton method (3) 

● Example 

 

 

 

 

 

– For (x,y) = 
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Gauss-Newton method (4) 

● Again,  kkekii wwwJwewe  )()()(
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Linear Least-Square Filter (1) 

● Given m input and 1 output function   )()( i
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Linear Least-Square Filter (2) 

● Characteristics of LLS 

– X does not need to be a square matrix 

 

– The Jacobian of the error function only depends on the input, 
and is invariant w.r.t. the weight w. 

 

– Pseudo-inverse :  
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Linear Least-Square Filter (3) 

● Example 

– X and d 
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Least-Mean-Square algorithm (1) 

● From energy function 
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Least-Mean-Square algorithm (2) 

● Handling of 

– The main problem arise because  of the fixed 

– One solution : Use a time varying learning rate 

– More better alternative  use hybrid method called search-
then-converge 

 

 

● Where      : big number 
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The Perceptron model 

● Non-linear neuron model ( McCulloch-Pitts model) 

– Objective : classify input vectors into two classes 
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Boolean logic gates with Perceptron (1) 

● “And” gate 

 

 

● “Or” gate 

 

 

 

● “Not” 

AND 

t=1.5 

W1=1 

w2=1 

-1 

AND 

t=0.5 

W1=1 

w2=1 

-1 

AND 

T=-0.5 

W1=-1 

-1 



Boolean logic gates with Perceptron (2) 

● Mechanism of Perceptron 
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Boolean logic gates with Perceptron (3) 

● Geometric interpretation 
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The role of Bias 

● Bias 

 

 

 

 

 

– Without the bias (t=0), learning is limited to adjustment of the 
slope of the separating line passing through the origin 
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Limitation of Perceptron 

● Limitation 

 

 

 

 

– Only functions where the 0 points and 1 points are clearly 
linearly separable can be represented by perceptrons 

– The geometric interpretation is generalizable to function of n 
arguments, i.e. perceptron with n inputs plus on threshold (or 
bias) unit. 



Generalization to n-dimension 

● In N dimension 

 

 

 

 

 

– In 3D, perceptron has a role of cutting plane 

– For n-D input space, the decision boundary becomes a (n-1)-
Hyperplane (1-D less than the input space) 
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Linear Separability (1) 

● Characteristics of perceptron 

 

 

 

 

– For function that take integer or real values are arguments and 
output either 0 or 1 

– Perceptron cannot represent such a function – not linear -
separable 



Linear Separability (2) 

● In “XOR” gate : Minsky and Papert (1969) 

 

 

 

 

 

 

– Perceptron cannot represent XOR 
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Linear Separability (3) 

● In detail, XOR gate 

I0 I1 XOR 

1 0 0 0 

2 0 1 1 

3 1 0 1 

4 1 1 0 

101100  tIwIw



Perceptron learning rule (1) 

● Objective 

– Given a linearly separable set of inputs that can  belong to 
class C1 or C2 

– The goal of perceptron learning is to have 

 

 

● Terminating condition 

– All input satisfying 

 

– Then   
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Perceptron learning rule (2) 

● Learning rule 

 

 

 

 

– Or, simply 
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Summary of LMS 

● Summary  

– Adaptive filter using LMS algorithm and perceptron are 
closely related 

– LMS and perceptron are different, however, since one uses 
linear activation and the other hard limiters 

– LMS is used in continuous learning, while perceptrons are 
trained for only a finite number of steps 

– Single-neuron or single-layer has severe limits : how can 
multiple layers help? 



Again, XOR gate 

● How can we handle XOR gate problem with perceptron 
concept? 
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Simple Review (1) 

● VC Dimension 

– VC (Line) = 3 

– VC (Triangle) = ? 

– VC (Rectangle) = ? 

 

● Unconstraint Nonlinear Programming 

– Steepest Descent 

– Newton  

– Gauss-Newton 

– L.L.S Filter 
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Simple Review (1) 

● Learning Process 

– Linear Least Square Filter 

 

 

– Linear Mean Square   
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Multi layer Perceptron (1) 

● “From Haykin’s book” 



Multi layer Perceptron (2) 

● Characteristics of M.L.P 

– Learning algorithm : “Backpropagation” algorithm 

● Forward pass : activate the network, layer by layer 

● Backward pass : error signal backpropagates  

– From output to hidden 

– From hidden to input 

 

– Activation function : sigmoid  

 

 

– It can have many hidden layers 
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Rearrangement of Activation function 
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 (that is, a=1) 



Redesign 



MLP and Backpropagation (1) 

● Nonlinear decision surfaces 



MLP and Backpropagation (2) 

● In XOR gate 

 

 

 

 

 

 

 
<One output> <Two Hidden, One Output> 



Error Gradient for a single sigmoid unit (1) 
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Error Gradient for a single sigmoid unit (2) 
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Backpropagation (1) 

● For output unit, j 

 

 

● For hidden unit, h 

 

 

● Update weight 
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Backpropagation (2) 

● For output unit, j 

 

 

 

● For hidden unit, h 
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Derivation of Δw : output unit  (1) 
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Derivation of Δw : output unit  (2) 
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Derivation of Δw : output unit  (3) 

● Finally, 
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Derivation of Δw : hidden unit  (1) 
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Derivation of Δw : hidden unit  (2) 

● Finally 
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Summary 
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