Single Workstation Factory Model

$$WIP_{q} = \lambda \cdot \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{1+C^{2}[S]}{2}\right)$$

$$CT_q = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{1+C^2[S]}{2}\right)$$

HYUNSOO LEE

Review (1)

- Analyzing Procedures for Simple system
 - Transition diagram
 - Balance equation
 - Calculation of probability
 - Calculation of WIP
 - Estimation of TH
 - Calculation of Cycle time
 - Analysis of other performance indexes

Review (2)

- Utilization factor
 - E[busy in server]

Homework

• Due:

- CT in system CT_s

U	M/M/1	M/M/2	M/M/3
0.5			
0.6			
0.7			
0.8			
0.9			

Contents

- Expansion to general cases
 - Erlang Distribution
 - $-M/E_{K}/N$
 - Coxian Distribution
 - M/G/N

Erlang Distribution (1)

Cases

- Question
 - Total Cycle time → Sum of each cycle time →?
 - Which system is better between M/M/1 and M/E $_{\rm K}$ /1?

Erlang Distribution (2)

- Analysis of Erlang distribution
 - Exponential distribution

- Coefficient of Variance

$$C^2[T] = \frac{V[T]}{E[T]^2}$$

- Erlang (K)

Erlang Distribution (3)

- Calculation of CoV
 - M/M/1

 $- M/E_K/1$

$$E[2X] = 2E[X]$$

$$V[2X] = 4V[X]$$

$M/E_2/1$

Case

• Transition Diagram

Coxian Distribution (1)

• Cases $M/Cox(\mu,\alpha,\gamma)/1/3$

Coxian Distribution (2)

Exercise

$$\lambda = 4/hr$$

$$\mu = 6/hr$$

$$\gamma = 5/hr$$

$$\alpha = 1/10$$

- WIP

Coxian Distribution (3)

- M / Cox (μ, γ, α) / 2
 - Transition Diagram

- Hint
 - WIP
 - Arrival
 - Service

Coxian Distribution (3)

Control model

- E[S]
$$E[S] = \frac{1}{\mu} + \alpha \frac{1}{\gamma}$$

- Control, Given E[S] and CoV $C^2[S]$
 - Using "Moment methods"

- Case 1:
$$C^{2}[S] > 1$$

$$\mu = \frac{2}{E[S]} \qquad \gamma = \frac{1}{E[S] \cdot C^{2}[S]} \qquad \alpha = \frac{1}{2 \cdot C^{2}[S]}$$
- Case 2: $\frac{1}{2} \le C^{2}[S] \le 1$

$$\mu = \frac{1}{E[S] \cdot C^{2}[S]} \qquad \gamma = \frac{2}{E[S]} \qquad \alpha = 2(1 - C^{2}[S])$$

M/G/1(1)

• Pollaczek and Khintchine (1931)

$$E[N_q] = \frac{\left(\frac{\lambda}{\mu}\right)^2 + \lambda^2 \sigma_s^{2^2}}{2\left(1 - \frac{\lambda}{\mu}\right)}$$

- WIP \rightarrow

M/G/1 (2)

• Expansion to general Eq.

$$E[N_q] = \frac{\left(\frac{\lambda}{\mu}\right)^2 + \lambda^2 \sigma_s^2}{2\left(1 - \frac{\lambda}{\mu}\right)}$$

$$E[N_q] = \frac{\lambda U E[S] + \lambda^2 \sigma_s^2}{2(1 - U)}$$
$$= \frac{\lambda U E[S] + \lambda^2 E[S]^2 C^2[S]}{2(1 - U)}$$

$$= \frac{\lambda UE[S] + U\lambda E[S]C^{2}[S]}{2(1-U)}$$

$$= \frac{U\lambda E[S]}{(1-U)} \cdot \left(\frac{1+C^2[S]}{2}\right)$$

$$CT_q = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{1+C^2[S]}{2}\right)$$

M/G/1 (3)

• Comparison with M/M/1

$$CT_q = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{1+C^2[S]}{2}\right)$$

M/G/C

• Generalization to M/G/C

$$CT_{q} = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{1+C^{2}[S]}{2}\right) \cdot \left(\frac{U^{\sqrt{2C+2}-2}}{C}\right)$$

G/G/C

• Generalization to G/G/C

$$CT_{q} = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{C^{2}[A] + C^{2}[S]}{2}\right) \cdot \left(\frac{U^{\sqrt{2C+2}-2}}{C}\right)$$