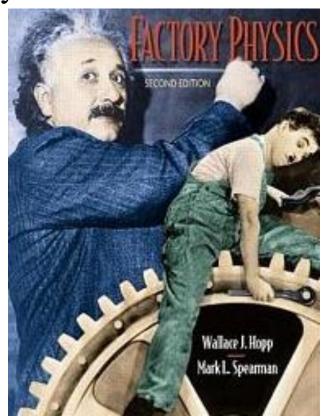
Basics of Manufacturing Process Analyses

$$CT_q = \left(\frac{U}{1 - U}\right) \cdot E[S] \cdot \left(\frac{U^{\sqrt{2C + 2} - 2}}{C}\right)$$

HYUNSOO LEE

Simulation & Control

• Simulation


Y = f(X)

• Control

Y = f(X)

Manufacturing Process Modeling

• Factory Physics

 $L = \lambda W$

Process Analyses (I)

• AnyLogic, ExtendSim, flexSim,

- Output of D.E.S.
 - Cycle Time
 - WIP
 - Throughput

Process Analyses (II)

• Assumption

- Three machines & serial processing
- Machining time = $\{1, 2, 1\}$
- Input strategy = when one output is leaving, one input enters

T=0- O O

T=0-		T=8-	
T=0		T=8	
$T=1^{-1}$		T=9-	
T=1		T=9	
T=2-		T=10 ⁻	
T=2		T=10	
T=3-		T=11 ⁻	
T=3		T=11	
$T=4^{-1}$		T=12 ⁻	
T=4		T=12	
T=5 ⁻		T=13 ⁻	
T=5		T=13	
T=6 ⁻		T=14 ⁻	
T=6		T=14	
$T=7^{-1}$		T=15 ⁻	
T=7		T=15	

Process Analyses (III)

• Performances

- # of machines = ?
- Works in Process = ?
- Throughput = ?
- Cycle time = ?

- Formula \rightarrow ?

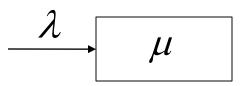
Exercise

- Assumption
 - Three machines & serial processing
 - Machining time = $\{1, 2, 1\}$
 - Input strategy = when one output is leaving, one input enters

- 1) Draw transition diagram
- 2) Compute cycle time
- 3) Compute WIP
- 4) Compute Throughput

Control of "Process model"

• Control model 1


 $L = \lambda \cdot W$

• Control model 2

$$W = f(\lambda, \mu_1, \sigma_1, \mu_2, \sigma_2, \cdots)$$

In one machine case (1)

• One machine case

In one machine case (2)

• Case of P_n

In one machine case (3)

• WIP, Cycle time and Throughput

In two machine case

- Case of $M/M/2/\infty$
 - Transition diagram
 - Balance equation

In non-identical machines

• Fast server (μ), slow server (δ)

In break-down case

• Rate

- Arrival rate : λ
- Service rate : μ
- Rate of break down : γ
- Time to repair : $\boldsymbol{\mathcal{U}}$

Again, M/M/1

• WIP in Queue : $E[W_q]$

• Cycle time in Queue : CT_q

• Cycle time in System : CT_s

In M/M/2 (1)

• Transition diagram & balanced equation

In M/M/2 (2)

• WIP in Queue : $E[W_q]$

• Cycle time in Queue : CT_q

• Cycle time in System : CT_S

In M/M/3

• Cycle time in System : CT_s