IG0029 IE Computing and Application

Fuzzy Relation, Inference and Control

HYUNSOO LEE

Fuzzy Relation and Inference (1)

• Relation

- Two set : X and Y

- Relation:

$$R_1: X \geq Y$$

R1	1	2	3	4
1				
2				
3				
4				

Fuzzy Relation and Inference (2)

• Two sets' relationship

Fuzzy Relation and Inference (3)

• Another Relation : X < Y

$$(x, y) \in R_1 \equiv \{(1,1), (1,2), (1,3), \dots, (4,4)\}$$

 $(x, y) \in R_2 \equiv \{(2,1), (3,2), (3,2), (4,1), \dots, (4,3)\}$

$$U \times U = R_1 \cup R_2$$
$$R_1 \cap R_2$$

Fuzzy Relation and Inference (4)

• Another Relation : X = Y

R1	1	2	3	4
1				
2				
3				
4				

$$R_3 \subset R_1$$

Fuzzy Relationship (1)

• Fuzzy Relationship

$$\widetilde{R}_1 = X << Y$$

R1	1	2	3	4
1				
2				
3				
4				

$$\widetilde{R}_1 \equiv \{(x, y) / \mu_{\widetilde{R}(x, y)}\}$$

Fuzzy Relationship (2)

• Another fuzzy relationship : $\tilde{R}_2 = X >> Y$

R1	1	2	3	4
1				
2				
3				
4				

$$\widetilde{R}_1 \cup \widetilde{R}_2 =$$

$$\widetilde{R}_1 \bigcup \widetilde{R}_2 =$$

$$\widetilde{R}_1 \cap \widetilde{R}_2 \neq \phi$$

Fuzzy Relationship (3)

• Another fuzzy relationship $\widetilde{R}_3 = X \cong Y$

R1	1	2	3	4
1				
2				
3				
4				

$$\widetilde{R}_3 \neq (\widetilde{R}_1 \bigcup \widetilde{R}_2)^c$$

Fuzzy Inference using fuzzy relation (1)

• Example: "Slender"

"Slender"		Weight (kg)				
		60	65	70	75	
Height (cm)	165					
	170					
	175					
	180					

$$\widetilde{R}_{"slender"} \equiv \{(h, w) / \mu_{slender(h, w)}\}$$

- What is the weight of slender person whose height is 170cm?
- What is the weight of slender person whose height is approximately 170cm?

$$\widetilde{A}_{"approximately"} \equiv \{165/0.7,170/1,175/0.7,180/0.3\}$$

Fuzzy Inference using fuzzy relation (2)

• Definition of "approximately 170cm"

$$\widetilde{A}_{"approximately"} \equiv \{165/0.7,170/1,175/0.7,180/0.3\}$$

"Slender"		Weight (kg)				
		60	65	70	75	
Height (cm)	165	1	0.7	0.3	0	
(cm)	170	1	1	0.7	0.3	
	175	1	1	1	0.7	
	180	1	1	1	1	

Fuzzy Inference using fuzzy relation (3)

• Solving through "Fuzzy Composition"

$$= \begin{bmatrix} 0.7 & 1 & 0.7 & 0.3 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.7 & 0.3 & 0 \\ 1 & 1 & 0.7 & 0.3 \\ 1 & 1 & 1 & 0.7 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

- Product → Min
- Sum → Max

Fuzzy Inference using fuzzy relation (4)

• Solving through "Fuzzy Composition"

$$= \begin{bmatrix} 0.7 & 1 & 0.7 & 0.3 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.7 & 0.3 & 0 \\ 1 & 1 & 0.7 & 0.3 \\ 1 & 1 & 1 & 0.7 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 0.7 & 0.7 \end{bmatrix}$$

- What is the weight of slender person whose height is approximately 170cm?

$$\widetilde{A}_{\text{"weight for approximately 170"}} \equiv \{60/1,65/1,70/0.7,75/0.7\}$$

Compositional Fuzzy Rule

- "O" **→** "Max-min"
 - Substitute (+ , X) in matrix algebra

- We can make more complicate inferences & Rules
 - "If height \sim , then weight is \sim "
 - In this case, the weight for the particular height is?

Another fuzzy inference - Fuzzy number (1)

• Example:

$$\tilde{2} = \{0.5/1, 1/2, 0.5/3\}$$
 $\tilde{4} = \{0.5/3, 1/4, 0.5/5\}$

$$\tilde{2} + \tilde{4} = ?$$

Another fuzzy inference - Fuzzy number (2)

• Rule → "Max - Min" Rule

$$\tilde{2} = \{0.5/1, 1/2, 0.5/3\}$$

$$\tilde{4} = \{0.5/3, 1/4, 0.5/5\}$$

Fuzzy Inference

- Two types of fuzzy inference
 - 1) Fuzzy relationship → new fuzzy membership function

- 2) fuzzy numbers' arithmetic operation

Fuzzy control

- Two types of fuzzy controls
 - Mandami model $\ \ \emph{if} \ \ \emph{x} \ \ \emph{is} \ \ \widetilde{\emph{A}}, \ \emph{then} \ \emph{y} \ \emph{is} \ \ \widetilde{\emph{B}}$
 - Example:
 - Larsen
 - Tsukamoto
 - Takagi-Sugeno-Kang model (TSK model)
 - Definition: if x is \widetilde{A} , then y is f(x)
 - Neural Fuzzy model

Mandami model

• Example

Tsukamoto model

- 2 or more fuzzy logics
 - Final output → Weighted Sum

$$w = \frac{\alpha_1 w_1 + \alpha_2 w_2}{\alpha_1 + \alpha_2}$$

TSK model (1)

Control theory

TSK model (2)

• Closed-loop transfer function

TSK model (3)

• Interpretation (1)

$$Y(s) = P(s) \cdot U(s)$$

$$U(s) = C(s) \cdot E(s)$$

$$E(s) = R(s) - F(s) \cdot Y(s)$$

$$Y(S) = \left(\frac{P(s) \cdot C(s)}{1 + F(s) \cdot P(s) \cdot C(s)}\right) R(s)$$

TSK model (4)

- Interpretation (2)
 - Closed-loop transfer function

$$Y(S) = \left(\frac{P(s) \cdot C(s)}{1 + F(s) \cdot P(s) \cdot C(s)}\right)$$

$$Y(S) = H(s)R(s)$$

TSK model (5)

PID Control

- Most used control design
- Proportional-Integral-Differential Control

$$u(t) = K_p e(t) + K_I \int e(t)dt + K_I \frac{d}{dt} e(t)$$

- In case of "MIMO" system

$$u(t) = K_p e(t) + K_I \frac{1}{s} e(t) + K_I t e(t)$$
$$u(t) = \left(K_p + K_I \frac{1}{s} + K_I t\right) e(t)$$

Again, TSK model (1)

Control model with fuzzy concept

if x is
$$\tilde{A}$$
, then y is $f(x)$

if
$$x_1$$
 is M_{i1} , and x_2 is M_{i2} ,..., and x_n is M_{in} then

$$\dot{x}(t) = A_i x(t) + B_i u(t)$$

Again, TSK model (2)

if x_1 is M_{i1} , and x_2 is M_{i2} ,..., and x_n is M_{in} then

$$\dot{x}(t) = A_i x(t) + B_i u(t)$$

$$\mu_i(t) = \prod_{j=1}^n \mu_{M_{ij}}(x_j(t))$$

Source of fuzzy control

- Source of fuzzy control
 - Expert knowledge and control engineering knowledge
 - Observation of operator's action
 - Fuzzy model of the process : linguistic description of the dynamic properties
 - Learning : learning from example of self-organizing learning

Fuzzy control

- Procedure of fuzzy control
 - 0. Situation
 - 1. state variable / Control variable
 - 2. Control model = Mandani / Tsukamoto / TSK / ...
 - 3. fuzzification method
 - 4. fuzzy inference
 - 5. defuzzification
 - 6. testing and turning
 - 7. Construction of look-up table

PID Control (1)

- Another control theory →PID Control
 - Most used control design
 - Proportional-Integral-Differential Control

$$U(s) = C(s) \cdot E(s)$$

$$u(t) = K_p e(t) + K_I \int e(t)dt + K_d \frac{d}{dt} e(t)$$

PID Control (2)

PID Control

$$u(t) = K_p e(t) + K_I \int e(t) dt + K_d \frac{d}{dt} e(t)$$

- Role of "P" $K_p e(t)$: Minimize current error
- Role of "I" $K_I \int e(t) dt$: Reflect past error trends
- Role of "D" $K_d \frac{d}{dt} e(t)$: Prevent future error patterns

PID Control (3)

• Rearrangement of "PID" using Laplace transform

$$u(t) = K_p e(t) + K_I \int e(t)dt + K_d \frac{d}{dt} e(t)$$

$$u(s) = K_p e(s) + K_I \frac{1}{s} e(s) + K_d s e(s)$$

$$u(s) = \left(K_p + K_I \frac{1}{t} + K_d t\right) e(s)$$

PID Control (4)

• Laplace transform (0)

$$F(s) \triangleright \ell\{f(t)\} = \int_{0}^{\infty} |f(t)| e^{-st} dt$$

$$\ell\{1\} = \int_{0}^{\infty} |1| e^{-st} dt = \left[-\frac{1}{s} e^{-st} \right]_{0}^{\infty} = \frac{1}{s}$$

PID Control (5)

• Laplace transform (1)

$$F(s) > \ell \{ f(t) \} = \int_{0}^{\infty} |f(t)| e^{-st} dt$$

$$\ell \{ \frac{df}{dt} \} = \int_{0}^{\infty} |f'(t)| e^{-st} dt = [e^{-st} f(t)]_{0}^{\infty} + s \int_{0}^{\infty} |f(t)| e^{-st} dt$$

$$= -f(0) + s\ell \{ f(t) \}$$

$$= sf(s)$$

PID Control (6)

• Laplace transform (2-1)

$$\ell\{\int f(t)dt\} =$$

$$F(s)G(s) = \int_{0}^{\infty} e^{-st} f(p) dp \int_{0}^{\infty} e^{-sk} g(k) dk$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{-sp} f(p) e^{-sk} g(k) dp dk$$

$$= \int_{0}^{\infty} f(p) dp \int_{0}^{\infty} e^{-s(p+k)} g(k) dk$$

$$(t = p+k, dt = dk)$$

PID Control (7)

• Laplace transform (2-2) $F(s)G(s) = \int_{\Omega} f(p)dp \int_{\Omega} e^{-s(p+k)}g(k)dk$ $= \int_{0}^{\infty} e^{-st} dt \int_{0}^{t} f(p)g(t-p)dp$ $= \int_{0}^{\infty} e^{-st} \left\{ \int_{0}^{t} f(p)g(t-p)dp \right\} dt = l\{f * g\}$ $l\{\int f(t)dt\} = \frac{F(s)}{s}$

PID Control (8)

• Finally,

$$u(t) = K_p e(t) + K_I \int e(t)dt + K_I \frac{d}{dt} e(t)$$

$$u(s) = K_p e(s) + K_I \frac{1}{t} e(s) + K_I s e(s)$$

$$u(s) = \left(K_p + K_I \frac{1}{s} + K_I s\right) e(s)$$

Again, TSK model (1)

Control model with fuzzy concept

if x is
$$\widetilde{A}$$
, then y is $f(x)$

if x_1 is M_{i1} , and x_2 is M_{i2} ,..., and x_n is M_{in} then

$$u(s) = \left(K_p + K_I \frac{1}{s} + K_I s\right) e(s)$$

Again, TSK model (2)

TSK model

if
$$x_1$$
 is M_{i1} , and x_2 is M_{i2} ,..., and x_n is M_{in}

$$then$$

$$u(s) = \left(K_p + K_I \frac{1}{s} + K_I s\right) e(s)$$

if x_1 is M_{i1} , and x_2 is M_{i2} ,..., and x_n is M_{in} then

$$\dot{x}(t) = A_i x(t) + B_i u(t)$$

Again, TSK model (3)

if x_1 is M_{i1} , and x_2 is M_{i2} ,..., and x_n is M_{in} then

$$\dot{x}(t) = A_i x(t) + B_i u(t)$$

$$\mu_i(t) = \prod_{j=1}^n \mu_{M_{ij}}(x_j(t))$$

Example (1)

- Engine Speed(rpm) & torque (ft-lb)
 - If rpm is low then torque is low
 - If rpm is medium then torque is medium
 - If rpm is high then torque is high
 - If rpm is very high then torque is medium

How to control using TSK model

Example (2)

• Fuzzy membership functions

Torque

Example (3)

• Fuzzy graph for fuzzy "Engine-Torque" logics

Example (4)

• TSK control model for fuzzy "Engine-Torque" logics

Example (5)

• Solution for TSK model

Example (5)

• Now, torque = 1100

Source of fuzzy control

- Source of fuzzy control
 - Expert knowledge and control engineering knowledge
 - Observation of operator's action
 - Fuzzy model of the process : linguistic description of the dynamic properties
 - Learning : learning from example of self-organizing learning

Fuzzy control

- Procedure of fuzzy control
 - 0. Situation
 - 1. state variable / Control variable
 - 2. Control model = Mandani / Tsukamoto / TSK / ...
 - 3. fuzzification method
 - 4. fuzzy inference
 - 5. defuzzification
 - 6. testing and turning
 - 7. Construction of look-up table

Exercise

- Total
 - 1) Calculate

$$\int_{1}^{2} \widetilde{2}x^{3} + \widetilde{4}x^{2}dx$$

• Where
$$\widetilde{2} = \{0.5/1,1/2,0.5/3\}$$

 $\widetilde{4} = \{0.5/3,1/4,0.5/5\}$

• 10 points

Exercise

- 2) Suppose that we have two fuzzy relations (R and S)

$$R = x_1 \begin{bmatrix} y_1 & y_2 & y_3 \\ 0.0 & 0.2 & 0.8 \\ x_2 & 0.3 & 0.6 & 1.0 \end{bmatrix} \qquad S = \begin{cases} z_1 & z_2 & z_3 \\ 0.3 & 0.7 & 1.0 \\ y_2 & 0.5 & 1.0 & 0.6 \\ y_3 & 1.0 & 0.2 & 0.0 \end{bmatrix}$$

- Based on predefined fuzzy relations R&S, make a new look up table for describing relationship between x and z 20 points]
- 3). Suggest TSK model for your mobile phone 30 pts
 - Explicitly defined your $y = f(\cdot)$

Exercise

- 4) Consider the problem of correlating interest rate (IR) to unemployment (UE). (Note that this is a simplistic approach and does not capture the realism of the problem). Let us the following fuzzy sets be defined over their respective domains 40 pts
 - IR
 - Low: $Low = \{1/1, 1/2, 0.5/3\}$
 - Med: $Medium = \{0.5/3,1/4,1/5,1/6,0.5/7\}$
 - UE
 - Low: $Low = \{1/4, 1/5, 0.3/6\}$
 - Med: $Medium = \{0.5/6,1/7,1/8,0.5/9\}$
 - And, let us define two simple rules of the form
 - If IR is low then UE is low
 - If IR is medium then UE is medium
 - Let another IR= $\{0.7/1,1/3,0.7/4,0.2/5\}$
 - Find UE for this another IR