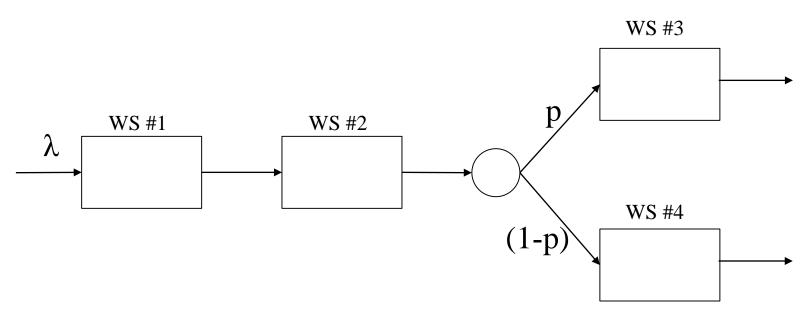
Multi-Stage Models



HYUNSOO LEE

Review (1)

- Stages
 - Process
 - Simulation
 - Control

Review (2)

• M/G/C

$$CT_{q} = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{1+C^{2}[S]}{2}\right) \cdot \left(\frac{U^{\sqrt{2C+2}-2}}{C}\right)$$

• G/G/C

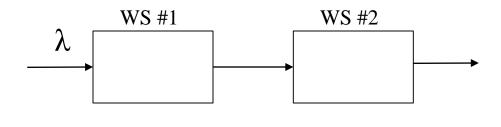
$$CT_{q} = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{C^{2}[A] + C^{2}[S]}{2}\right) \cdot \left(\frac{U^{\sqrt{2C+2}-2}}{C}\right)$$

Contents

- Multi-stage Models
 - Multi-stage Serial Processes
 - Multi-stage Merging Processes
 - Multi-stage Split Processes
 - Application

Serial Processes (1)

• Idea from two-stage processes



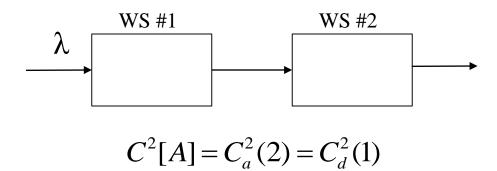
$$CT_{Total} \neq CT_1 + CT_2$$

$$CT_{Total} = CT_1 + CT_2$$

$$CT_2' = \left(\frac{U}{1-U}\right) \cdot E[S] \cdot \left(\frac{C^2[A] + C^2[S]}{2}\right) \cdot \left(\frac{U^{\sqrt{2C+2}-2}}{C}\right) + E[S]$$

Serial Processes (2)

• Calculation of $C^2[A]$



Buzzacott and Shanthikumar (1963)

$$C_d^2(1) \approx (1 - U^2) \cdot C_a^2(1) + U^2 \cdot C_s^2$$

Serial Processes (3)

• Estimation of $C_d^2(1)$

$$- G/G/1$$

$$C_d^2(1) \approx (1 - U^2) \cdot C_a^2(1) + U^2 \cdot C_s^2$$

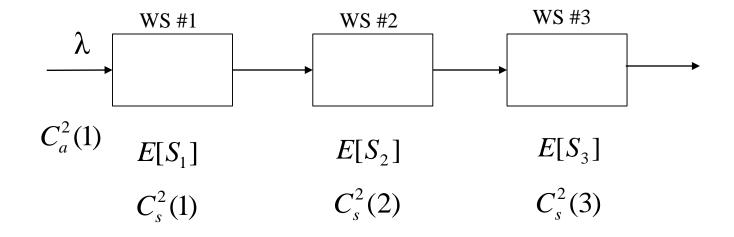
- G/G/C

$$C_d^2(1) \approx (1 - U^2) \cdot C_a^2(1) + U^2 \cdot \frac{C_s^2 + \sqrt{c} - 1}{\sqrt{c}}$$

Where,
$$U = \frac{\lambda}{c \cdot \mu}$$

Serial Processes (4)

- Expansion to general processes
 - Given Data



$$WIP_{Sys} = ?$$

$$CT_{Sys} = CT_{S}(1) + CT_{S}(2) + CT_{S}(3)$$

Serial Processes (5)

• Cont'd, #1 machine

$$CT_{Sys} = CT_{S}(1) + CT_{S}(2) + CT_{S}(3)$$

$$CT_{s}(1) = \left(\frac{U_{1}}{1 - U_{1}}\right) \cdot E[S] \cdot \left(\frac{C_{a}^{2}(1) + C_{s}^{2}(1)}{2}\right) \cdot \left(\frac{U_{1}^{\sqrt{2C + 2} - 2}}{C}\right) + E[S_{1}]$$

Where,
$$U_1 = \lambda_1 \cdot E[S_1]$$

Serial Processes (6)

• Cont'd, #2 machine

$$CT_{Sys} = CT_{S}(1) + CT_{S}(2) + CT_{S}(3)$$

$$CT_{s}(2) = \left(\frac{U_{2}}{1 - U_{2}}\right) \cdot E[S_{2}] \cdot \left(\frac{C_{a}^{2}(2) + C_{s}^{2}(2)}{2}\right) \cdot \left(\frac{U_{2}^{\sqrt{2C + 2} - 2}}{C}\right) + E[S_{2}]$$

$$C_a^2(2) = C_d^2(1) \approx (1 - U_1^2) \cdot C_a^2(1) + U_1^2 \cdot \frac{C_s^2(1) + \sqrt{c - 1}}{\sqrt{c}}$$

Where,
$$U_1 = \lambda_1 \cdot E[S_1]$$

 $U_2 = \lambda_2 \cdot E[S_2]$

Serial Processes (7)

• Cont'd, #3 machine

$$CT_{Sys} = CT_S(1) + CT_S(2) + CT_S(3)$$

$$CT_{s}(3) = \left(\frac{U_{3}}{1 - U_{3}}\right) \cdot E[S_{3}] \cdot \left(\frac{C_{a}^{2}(3) + C_{s}^{2}(3)}{2}\right) \cdot \left(\frac{U_{3}^{\sqrt{2C + 2} - 2}}{C}\right) + E[S_{3}]$$

$$C_a^2(3) = C_d^2(2) \approx (1 - U_2^2) \cdot C_a^2(2) + U_2^2 \cdot \frac{C_s^2(2) + \sqrt{c - 1}}{\sqrt{c}}$$

Where,
$$U_2 = \lambda_2 \cdot E[S_2]$$

 $U_3 = \lambda_3 \cdot E[S_3]$

Serial Processes (8)

• Finally,

$$CT_{Sys} = CT_{S}(1) + CT_{S}(2) + CT_{S}(3)$$

$$WIP_{Sys} = \lambda_1 \cdot CT_S (1)$$

Homework #1

Consider a three-workstation factory with serial flow

Workstation	$E[S_i]$	C_s^2
1	12 min	2.0
2	9 min	0.7
3	13.2 min	1.0

- A mean of 15 min (4 jobs per hour)
- A Squared coefficient of variation = 0.75

$$TH_{Sys}$$
 CT_{Sys}
 WIP_{Sys}

Merging Processes (1)

• Scenario



Merging Processes (2)

• Scenario, Cont'd



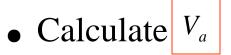
Merging Processes (3)

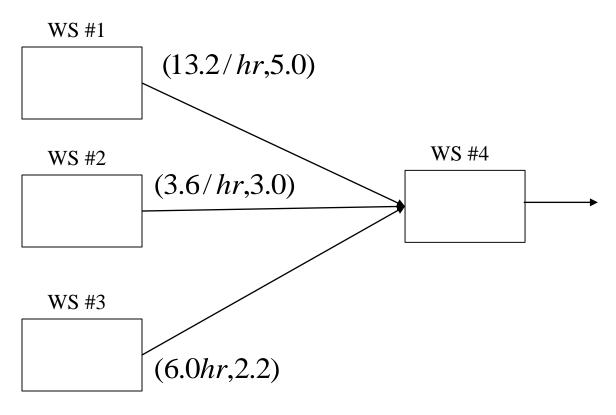
Conclusion

$$\lambda = \sum_{i=1}^n \lambda_i$$

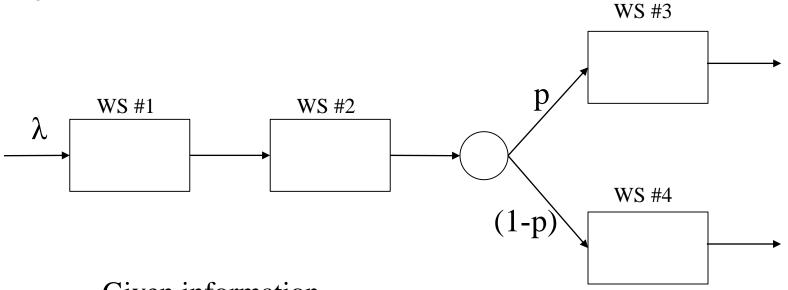
$$C_a^2 = \sum_{i=1}^n \frac{\lambda_i}{\lambda} \cdot C_i^2$$

Homework #2





Split Processes (1)



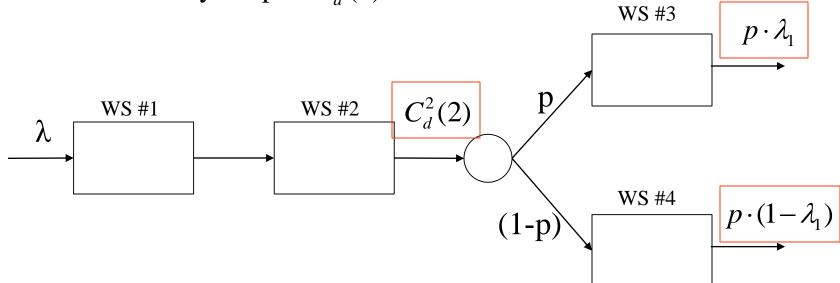
- Given information

$$E[S_i],_{i=1,2,3,4}$$
 $C_s^2(i),_{i=1,2,3,4}$

$$p_{*_{0 \le p \le 1}}$$

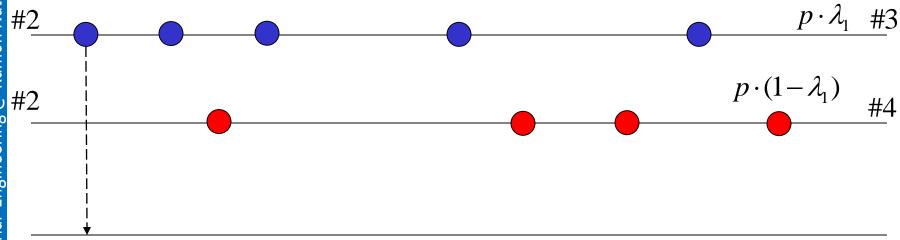
Split Processes (2)

- Scenario, cont'd
 - Type $1:1 \rightarrow 2 \rightarrow 3$
 - Type2 : $1 \rightarrow 2 \rightarrow 4$
 - How do you split $C_d^2(2)$?



Split Processes (3)

• Analysis of $C_d^2(2)$



$$C_d^2(2) \approx (1 - U_2^2) \cdot C_a^2(2) + U_2^2 \cdot \frac{C_s^2(2) + \sqrt{c} - 1}{\sqrt{c}}$$

Split Processes (4)

Analysis of Stage #4

#1(4) =
$$T_1 + T_2 + T_3$$

#2(4) = $T_4 + T_5 + T_6$
#3(4) = T_7
#4(4) = $T_8 + T_9$

$$T_4 = T_1 + \dots + T_N = \sum_{i=1}^N T_i$$

$$E[T_4] = E\left[\sum_{i=1}^N T_i\right] = E[T] \cdot E[N]$$

Split Processes (5)

Analysis of Stage #4, Cont'd

$$E[N]$$

$$E[N]$$

$$P\{N = n\} = (1 - p)^{n-1} \cdot p, n = 1, 2, \cdots$$

$$E[N] = \frac{1}{p}$$

$$V[N] = \frac{1 - p}{p^2}$$

$$CoV[N] = 1 - p$$

$$E[T_4] = \frac{E[T]}{P}$$

$$V[T_4] = \frac{V[T]}{P} + \frac{(1-p)E(T)^2}{P^2}$$

Split Processes (6)

Generalization

$$E[T_4] = \frac{E[T]}{P}$$

$$V[T_4] = \frac{V[T]}{P} + \frac{(1-p)E(T)^2}{P^2}$$

$$E[T_i] = \frac{E[T]}{P}$$

$$V[T_i] = \frac{V[T]}{P} + \frac{(1-p)E(T)^2}{P^2}$$

Split Processes (7)

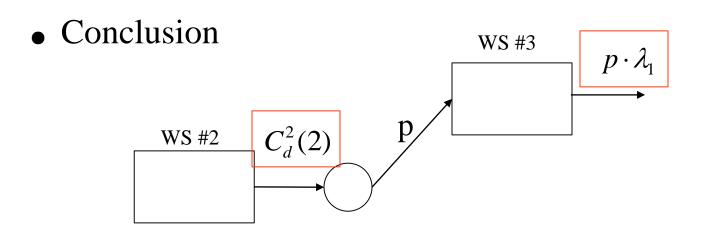
• Generalization, Cont'd

$$E[T_i] = \frac{E[T]}{P}$$
 $V[T_i] = \frac{V[T]}{P} + \frac{(1-p)E(T)^2}{P^2}$

$$C_i^2 = \frac{V[T_i]}{E[T_i]^2} = \left(\frac{V[T]}{P} + \frac{(1-p)E(T)^2}{P^2}\right) \cdot \frac{P^2}{E[T]^2}$$

$$= P \cdot C^2 + (1 - P)$$

Split Processes (8)



$$C_a^2(3) = p \cdot C_d^2(2) + (1-p)$$

Homework #3

• Obtain the man flow rate

